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Abstract—Many critical robotics applications require robust-
ness to disturbances arising from unplanned forces, state un-
certainty, and model errors. Motion planning algorithms that
explicitly reason about robustness require a coupling of trajectory
optimization and feedback design, where the system’s closed-
loop response to bounded disturbances is optimized. Due to the
often-heavy computational demands of solving such problems,
the practical application of robust trajectory optimization in
robotics has so far been limited. We derive a tractable robust
optimization algorithm that combines direct transcription with
linear-quadratic feedback to efficiently reason about closed-loop
responses to disturbances. In the case of ellipsoidal disturbance
sets, the state and input deviations along a nominal trajectory
can be computed locally in closed form, thus allowing for fast
evaluations of robust cost and constraint functions. The resulting
algorithm, called DIRTREL, is an extension of classical direct
transcription that demonstrably improves tracking performance
over non-robust formulations while incurring only a modest
increase in computational cost. We evaluate the algorithm in
several simulated robot planning and control tasks.

I. INTRODUCTION

Motion planning has been an active research topic that
has yielded several successes in recent years, from sampling-
based algorithms that scale to large state spaces [13, 14] to
nonlinear optimization methods capable of handling complex
dynamic constraints [31, 32, 2] and contacts [33, 29, 30].
Despite this, the world’s most advanced robots still struggle
to perform robustly when subjected to disturbances caused by
unplanned forces, state estimation errors, and model inaccura-
cies. Algorithms that explicitly reason about robustness require
a coupling of motion planning and feedback design, frequently
resulting in computationally expensive algorithms that have
limited practical utility in robotics. This paper aims to address
this problem by extending a popular trajectory optimization
method—direct transcription (DIRTRAN)—to optimize the
closed-loop tracking performance of the system along the
nominal planned trajectory.

This paper builds on previous work on robust motion
planning, including methods based on direct trajectory op-
timization [25, 3], as well as indirect methods based on
differential dynamic programming (DDP) [26, 6, 28]. While
existing algorithms differ in the precise notion of robustness
that each seeks to optimize, they all fall into one of two
broad categories: deterministic minimax methods that seek
to optimize performance given worst-case disturbances, and

stochastic risk-sensitive methods that seek to optimize cost
functionals that account for second-order statistics (e.g. vari-
ance) of system performance. To date, neither approach has
resulted in an algorithm that can explicitly include known
bounds on disturbances that enter the system dynamics in a
nonlinear way, robustly handle state and input constraints, and
scale to practical robotic systems with high dimensional state
and input spaces.

In contrast, we propose a robust motion planning algorithm
that reasons about disturbances by optimizing a robust cost
function that is differentiable and can be computed analyt-
ically. The key to our approach is the observation that, by
restricting the problem to time-varying linear feedback (e.g.,
LQR) and ellipsoidal disturbance sets, bounds on state and
input deviations can be computed locally along a nominal
trajectory in closed form. As a result, a computationally
tractable penalty function over the set of all disturbances can
be defined and constraints can be enforced on the disturbed
trajectories. We incorporate this robust penalty function into a
direct transcription method (DIRTRAN), and therefore inherit
their well-known benefits, including straightforward handling
of state and input constraints, good numerical conditioning,
and favorable sparsity properties. The resulting algorithm,
called DIRTREL (DIRect TRanscription with Ellipsoidal dis-
turbances and Linear feedback), can be applied to the same
class of systems as standard direct transcription, while signif-
icantly improving closed-loop robustness.

This paper is organized as follows: In Section II we
summarize prior work related to robust control in robotics.
We then review the classic direct transcription algorithm in
Section III before proposing our robust extension, DIRTREL,
in Section IV. Section V describes several simulation exper-
iments used to validate our new algorithm and analyze its
computational performance. Finally, we discuss conclusions
and future work in Section VI.

II. RELATED WORK

The theory of robust control of linear dynamical systems has
developed into a rich literature over the past four decades [37].
In particular, a set of techniques collectively known as H∞
control allows designers to optimize performance in the pres-
ence of disturbances by minimizing the L2 gain of the closed-
loop system. H∞ techniques have also been investigated for



nonlinear systems [17, 19], but the resulting algorithms do not
scale gracefully to most problems of interest in robotics. A
notable exception is the work of Yeon and Park, who derived
an H∞ tracking controller for a 6-DoF manipulator for the
case of a given trajectory and disturbances arising from flexible
joints [36].

Several robust variants of differential dynamic program-
ming [11] have been proposed for solving worst-case mini-
max problems [26], risk-sensitive optimizations for stochastic
systems [6], and cooperative stochastic games [28]. Like the
algorithm proposed in this paper, these methods consider
closed-loop system responses under linear-quadratic feedback.
However, they differ in the metric used to quantify robustness
and lack the ability to explicitly incorporate known bounds
on disturbances. Additionally, none of the existing DDP-based
algorithms directly handles state or input constraints, although
these could presumably be combined with constrained DDP
variants [16]. In contrast, the algorithm presented in this paper
naturally handles nonlinear constraints on the nominal and
disturbed state and input trajectories.

Tube-based model-predictive control (MPC) algorithms [21]
use MPC to reject additive disturbances along an optimized
nominal trajectory. Mordatch et al. [25] developed an ensem-
ble trajectory optimization method that aims to reduce the
expected cost under random model parameters while reducing
trajectory variation under PD control. Lou and Hauser [18]
combined robust motion planning with model estimation to
optimize robust motions involving contact changes. However,
their approach required the kinematic plan to be given and
only optimized the timing of the motion. Several authors have
developed risk-sensitive optimal control methods [10, 35] for
nonlinear stochastic systems with known models [6] or data-
driven control learning approaches [34, 4, 15].

Verification approaches to feedback motion planning at-
tempt to compute regions of finite-time invariance, or “fun-
nels,” which provide a certificate of stability. Moore et al.
extended the LQR-Trees framework to include uncertainty in
funnel estimates using a Common Lyapunov formulation of a
sums-of-squares (SOS) program [24]. A related line of work
led to the development of robust adaptive tracking controllers
with guaranteed finite-time performance [23]. Majumdar and
Tedrake extended these ideas to support robust online planning
using pre-planned funnel libraries to construct a policy that
can adjust funnels and tracking controllers based on sensor
feedback [20]. The algorithm we describe is complementary
to these methods in that it aims to design robust trajectories
that, if desired, can be subsequently tracked and verified using
SOS-based methods.

The previous work most closely related to this paper is
that of Griffin and Grizzle [8] and Dai and Tedrake [3].
These authors augment direct trajectory optimization methods
with cost functionals that weight the tracking performance
of linear feedback controllers. However, there are several
important differences from our approach. In [8], a fixed-gain
proportional-integral (PI) controller is assumed, placing severe
limits on closed-loop performance and applicability of the

method. In [3], the elements of the time-varying cost-to-go
matrix associated with an LQR tracking controller are added
as decision variables to the optimization problem and con-
strained to satisfy a differential Riccati equation. In addition,
disturbances must be sampled, which scales poorly with the
dimensionality of the disturbance vector. This substantially
increases the size and complexity of the nonlinear program that
must be solved, limiting the practical utility of the algorithm.

III. DIRECT TRANSCRIPTION

Direct transcription methods solve optimal control problems
by explicitly parameterizing the state and control trajectories
and formulating a large, sparse nonlinear program [1]. Com-
pared to shooting methods, these algorithms enable straightfor-
ward inclusion of state constraints and avoid numerical pitfalls
such as the “tail wagging the dog” effect, at the expense of
a larger problem size. The resulting nonlinear optimization
problems can be solved using commercial sequential-quadratic
programming (SQP) packages, such as SNOPT [7], that ex-
ploit the sparsity patterns in the linearized constraint matrix.

DIRTRAN is a particular implementation of direct transcrip-
tion. Given a nonlinear dynamical system, ẋ = f(x, u), we
discretize the system trajectory in time using N knot points,
x1:N = {x1, . . . , xN} and u1:N−1 = {u1, . . . , uN−1}, and
solve the following NLP,

minimize
x1:N , u1:N−1, h

gN (xN ) +

N−1∑
i=1

g(xi, ui)

subject to xi+1 = xi + f(xi, ui) · h ∀i = 1 : N − 1

ui ∈ U ∀i = 1 : N − 1

xi ∈ X ∀i = 1 : N

hmin ≤ h ≤ hmax

(1)

where g(·, ·) and gN (·) are cost functions, X is a set of
feasible states, U is a set of feasible inputs, and h is the time
step used for integration. For simplicity, we have assumed
a forward Euler integration scheme, although other schemes
such as backward Euler or midpoint interpolation can be used
instead. By including h as a decision variable, we allow
the solver to scale the duration of the trajectory. In what
follows, we write the discrete-time dynamics as an iterated
map, xi+1 = fh(xi, ui), for conciseness.

IV. DIRECT TRANSCRIPTION WITH ELLIPSOIDAL
DISTURBANCES

The following subsections describe how we extend the
standard DIRTRAN problem to incorporate linear feedback,
bounded disturbances, and a cost function that penalizes
closed-loop deviations from the nominal trajectory.

A. State and Input Deviations

First, we assume disturbances, wi ∈ W , can enter into the
dynamics in a general nonlinear way:

xi+1 = fh(xi, ui, wi). (2)



Under this definition, wi could, for example, correspond
to model parameter uncertainty, unplanned external forces,
or state estimation errors. A trajectory, x1:N , u1:N−1, that
satisfies

xi+1 = fh(xi, ui, 0) (3)

is referred to as a nominal trajectory. Given a disturbance
sequence, w1:N−1, the deviations from the nominal state
trajectory are calculated as

δxi+1 = fh(xi + δxi, ui + δui, wi)− xi+1, (4)

and we assume that deviations from the nominal input se-
quence are computed using a linear feedback controller,

δui = −Kiδxi. (5)

Any reasonable choice of linear controller can be used, but in
the development that follows we define Ki to be the optimal
time-varying linear quadratic regulator (TVLQR) gain matrix
computed by linearizing the dynamics along the nominal
trajectory and solving the dynamic Riccati equation,

Ki = (R+BT
i Pi+1Bi)

−1(BT
i Pi+1Ai)

Pi = Q+KT
i RK

T
i + (Ai −BiKi)

TPi+1(Ai −BiKi) ,
(6)

where A = ∂fh/∂x, B = ∂fh/∂u, and Q � 0 and R � 0 are
user-specified state and input cost-weighting matrices.

B. A Robust Cost Function

To optimize robustness, our approach augments the NLP
(1) with an additional cost term, `W(x1:N , u1:N−1). In-
tuitively, we want this function to penalize deviations of
the closed-loop system from the nominal trajectory in the
presence of disturbances wi drawn from some set W . To
penalize these deviations, we assume a quadratic one-step
cost, δxTi Q

`δxi + δuTi R
`δui, where Q` and R` are positive

semidefinite-matrices.
In order to compute δx1:N and δu1:N−1, we need a well-

defined disturbance sequence, w1:N−1. Instead of resorting to
sampling or worst-case minimax optimization methods, we
instead approximate the robust cost averaged over the entire
disturbance set and summed along the trajectory:

`W(x1:N , u1:N−1) ≈
1

Vol(W)

∫
W

(
δxTNQ

`
NδxN

+

N−1∑
i=1

(
δxTi Q

`δxi + δuTi R
`δui

))
dW. (7)

For general nonlinear systems and disturbance sets, the integral
in equation (7) cannot be easily computed. However, the
assumption of an ellipsoidal disturbance set and a linearization
of the dynamics about the nominal trajectory leads to a
computationally tractable approximation. While linearization
of the dynamics may seem limiting, we argue that the re-
sulting local approximation has roughly the same region of
validity as the LQR tracking controller. It therefore does not

impose significant practical limitations beyond those already
associated with the use of linear feedback.

We parameterize the ellipsoidal set W by a matrix D � 0,
such that

wTD−1w ≤ 1. (8)

Note that the set of vectors describing the semi-axes ofW are
given by the columns of the principal square root of D, defined
such that D = D1/2D1/2. Using the fact that ellipsoids
map to ellipsoids under linear transformations, approximate
ellipsoidal bounds on the state deviations, δxi, at each time
step i can be computed. As in equation (8), we parameterize
these ellipsoids by matrices Ei � 0.

Assuming a bound on the initial state deviation δx1 pa-
rameterized by E1, the matrices Ei can be found at all future
time steps using the system dynamics. Linearizing equation (4)
about the nominal trajectory gives a set of linear time-varying
equations of the form

δxi+1 ≈ Aiδxi +Biδui +Giw , (9)

where G = ∂fh/∂w. A recursion for Ei+1 in terms of Ei and
D can then be defined:

Mi+1 = FiMiF
T
i , (10)

where Mi and Fi are defined as follows,

Mi =

[
Ei Hi

HT
i D

]
(11)

Fi =

[
(Ai −BiKi) Gi

0 I

]
, (12)

and M1 is initialized with H1 = 0 and E1 � 0.
The propagation of Ei forward in time through the lin-

earized dynamics bears some resemblance to the covariance
propagation step in a Kalman Filter. However, there are some
important differences. First, as a matter of interpretation,
equation (10) is purely deterministic. Ei represents a strict
bound rather than a statistical covariance. Second, equations
(10)–(12) contain additional cross terms, signified by the
presence of the Hi blocks in the matrix Mi, which are absent
in the Kalman Filter due to the statistical independence of
noise at different time steps.

Returning to the cost function `W(x1:N , u1:N−1), we re-
place the volume integral over the disturbance set in equation
(7) with a sample mean calculated over the columns of E1/2

i ,
which correspond to the semi-axis vectors of the ellipsoids
bounding the state,

`W(x1:N , u1:N−1) =
1

nx

∑
col(E

1/2
N )

δxTNQ
`
NδxN

+
1

nx

N−1∑
i=1

∑
col(E

1/2
i )

δxTi Q
`δxi + δuTi R

`δui , (13)

where nx is the state dimension. In the remainder of the paper
we omit this constant factor, as it has no effect on the results
and can be folded into the cost-weighting matrices.



The sum over the columns of E1/2
i can be computed by

rewriting the quadratic forms in equation (7) using the trace
operator,

δxTi Qδxi = Tr(Qδxiδx
T
i ) (14)

δuTi Rδui = Tr(Rδuiδu
T
i ), (15)

and replacing the outer products δxiδx
T
i and δuiδu

T
i with

suitable expressions involving Ei:

`W(x1:N , u1:N−1) =

Tr (QNEN ) +

N−1∑
i=1

Tr
(
(Q+KT

i RKi)Ei

)
. (16)

Equations (10)–(12) and (16) provide an easily computable
cost function that quantifies the system’s closed-loop sensi-
tivity to disturbances. The evaluation of `W(x1:N , u1:N−1) is
summarized in Algorithm 1.

Algorithm 1 Robust Cost Function
1: function `W (x1:N , u1:N−1, D,E1, Q

`, R`, Q`
N , Q,R)

2: for i = 1 . . . N − 1 do
3: Ai ← ∂x=xi fh(x, u, w)
4: Bi ← ∂u=ui

fh(x, u, w)
5: Gi ← ∂w=0 fh(x, u, w)
6: end for
7: K1:N−1 ← TV LQR(A1:N−1, B1:N−1, Q,R)
8: H1 ← 0
9: for i = 1 . . . N − 1 do

10: `← `+Tr
(
(Q` +KT

i R
`Ki)Ei

)
11: Ei+1 ← (Ai −BiKi)Ei(Ai −BiKi)

T

+(Ai −BiKi)HiG
T
i

+GiH
T (Ai −BiKi)

T

+GiDG
T
i

12: Hi+1 = (Ai −BiKi)Hi +GiD
13: end for
14: `← `+Tr

(
Q`

NEN

)
15: return `
16: end function

C. The DIRTREL Algorithm

We now develop a complete algorithm that outputs a feasible
trajectory and feedback controller for the nominal (w = 0)
system such that the sensitivity of the closed-loop system to
disturbances is minimized. In addition to augmenting (1) with
`W(x1:N , u1:N−1), we must also ensure that the closed-loop
system obeys state and input constraints. To do so, we again
use the columns of E1/2

i , which give the extreme values of
δxi on the boundary of the ellipsoid.

In particular, all state constraints on the nominal trajectory
must also be applied to the set of disturbed state vectors,

xWi = xi ± col
(
E

1/2
i

)
, (17)

and all input constraints must also be applied to the set of
disturbed closed-loop inputs,

uWi = ui ± col
(
(KiEiK

T
i )

1/2
)
. (18)

The resulting optimization problem, referred to as DIRTREL,
can be expressed as the following NLP:

minimize
x1:N , u1:N−1, h

`W(x1:N , u1:N−1) + gN (xN ) +

N−1∑
i=0

g(xi, ui)

subject to xi+1 = fh(xi, ui) ∀i = 1 : N − 1

ui ∈ U ∀i = 1 : N − 1

uWi ∈ U ∀i = 1 : N − 1

xi ∈ X ∀i = 1 : N

xWi ∈ X ∀i = 1 : N

hmin ≤ h ≤ hmax

(19)

Unlike minimax approaches to robust control,
`W(x1:N , u1:N−1) and the associated robust state and
input constraints in (19) are smooth functions of the state
and input trajectories. As a result, they can be differentiated
in closed form and good convergence behavior can be
achieved with standard NLP solvers based on Newton’s
method [27]. Also, since DIRTREL combines the classic
DIRTRAN algorithm with a robust cost function based on
the LQR Riccati recursion, it inherits the favorable linear
computational complexity of those algorithms with respect to
the number of knot points in the trajectory [1]. Finally, we
note that the number of decision variables has remained the
same as standard DIRTRAN.

V. EXAMPLES

We now present several examples to demonstrate the per-
formance of DIRTREL. Comparisons are made to the stan-
dard approach of performing trajectory optimization with
DIRTRAN followed by synthesis of a time-varying LQR track-
ing controller. All algorithms are implemented in MATLAB,
and the commercial SQP solver SNOPT [7] is used to solve
the resulting NLPs. DIRTREL’s running time on all examples
is between two and four times that of standard DIRTRAN.
Empirically, the increased running time is primarily attributed
to the calculation of derivatives of the robust cost function
(currently done in MATLAB). We anticipate substantial gains
could be achieved with a more careful C++ implementation.

A. Pendulum with Uncertain Mass

In the first test case, a simple pendulum of unit length with
an input torque is considered. The mass of the pendulum is
bounded between 0.8 and 1.2, and the actuator has torque
limits −3 ≤ u ≤ 3. The goal is to swing the pendulum from its
downward stable equilibrium at θ = 0 to the upward unstable
equilibrium at θ = π in minimum time.



The following cost-weighting matrices are used in both the
robust cost function `W and the LQR tracking controller:

R = R` = 0.1

Q = Q` =

[
10 0
0 1

]
QN = Q`

N =

[
100 0
0 100

]
The matrix D corresponding to the ±0.2 bound on the
pendulum mass is D = (0.2)2, and the algorithm is initialized
with no initial disturbance on the state:

E1 =

[
0 0
0 0

]
(20)

The state and input trajectories produced by DIRTRAN
and DIRTREL are shown in Figure 1. Consistent with the
minimum-time nature of the problem, DIRTRAN produces
a bang-bang control policy that uses the maximum torque
that the actuator is capable of producing. DIRTREL, on the
other hand, produces a nominal trajectory that stays clear
of the torque limits. Over several numerical simulations, the
DIRTREL controller was able to perform successful swing-
ups of pendulums with mass values up to m ≈ 1.3, while
the DIRTRAN controller was successful only up to m ≈ 1.1.
While tuning the cost function used in DIRTRAN through
trial and error could likely result in more robust tracking
performance, DIRTREL allows known bounds on the plant
model to be incorporated in a principled and straight-forward
manner that eliminates the need for such “hand tuning.”

0 0.5 1 1.5 2 2.5

−2

0

2

θ DIRTREL
DIRTRAN

0 0.5 1 1.5 2 2.5

−2

0

2

Time (s)

u

Fig. 1. Pendulum swing-up trajectories

B. Cart Pole with Unmodeled Friction

Friction is typically difficult to model in mechanical sys-
tems. DIRTREL allows uncertain friction forces to be ac-
counted for without assuming any particular functional form.

To demonstrate this, we now consider a swing-up problem for
the cart pole system depicted in Figure 2. The system’s state
vector x ∈ R4 consists of the cart’s position, the pendulum
angle, and their corresponding first derivatives. The input
u ∈ R consists of a force applied to the cart. Nonlinear
Coulomb friction is applied between the cart and the ground.
Once again, the goal is to swing the pendulum from the
downward θ = 0 position to the upward θ = π position.

Fig. 2. Cart pole

In our simulations, the cart mass is taken to be mc = 1,
the pendulum mass is mp = 0.2, and the pendulum length
is l = 0.5. The cart’s actuator is limited to −10 ≤ u ≤ 10.
The nominal model used during trajectory optimization has
no friction, while in simulation the following friction force is
applied to the cart,

Fc = − sign(ẋ)µFN , (21)

where µ is a friction coefficient and FN is the normal force
exerted between the cart and the ground.

To account for unmodeled friction in DIRTREL, we make
w an exogenous force input to the cart and bound it such that
−2 ≤ w ≤ 2, corresponding to D = 4. We use the following
running cost in both DIRTRAN and DIRTREL:

g(xi, ui) = xTi xi + 0.1u2i ,

and a terminal constraint is enforced on the final state, xN =
[0 π 0 0]T . The following cost-weighting matrices are used
in both the robust cost function `W and the LQR tracking
controller:

R = R` = 1

Q = Q` =


10 0 0 0
0 10 0 0
0 0 1 0
0 0 0 1



QN = Q`
N =


100 0 0 0
0 100 0 0
0 0 100 0
0 0 0 100

 .
Figure 3 shows the nominal trajectories generated by both

DIRTRAN and DIRTREL. As in the pendulum example,
the DIRTREL trajectory avoids saturating the actuator while
taking longer to complete the swing up. In this case, however,
the two trajectories are qualitatively different; the DIRTREL



trajectory takes one additional swing to reach the vertical
position.
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Fig. 3. Cart pole swing-up trajectories

Numerous simulations were performed while varying the
friction coefficient µ to characterize the robustness of the
closed-loop systems. Successful swing up was observed using
the DIRTRAN trajectory with LQR tracking over the range
0 ≤ µ ≤ 0.064, while the DIRTREL trajectory with LQR
tracking was successful over the range 0 ≤ µ ≤ 0.295.

C. Quadrotor with Wind Gusts

Next, we demonstrate DIRTREL on a quadrotor subjected
to random wind gusts. The goal is for the aircraft to move
from an initial position to a final position while navigating an
obstacle field. The dynamics are described using the model of
[22] and wind gusts are simulated by applying band-limited
white noise accelerations to the system.

In both DIRTRAN and DIRTREL, constraints on the initial
and terminal states of the quadrotor were applied, and a
quadratic running cost of the following form was used:

g(xi, ui) = xTi Qxi + uTi Rui . (22)

The same weighting matrices were used in the running cost,
the robust cost `W , and the LQR tracking controllers:

R = R` = 0.1 I4×4

Q = Q` =

[
10 I6×6 0

0 I6×6

]
QN = Q`

N =

[
10 I6×6 0

0 I6×6

]

Two different trajectories were computed with DIRTREL.
In the first (DIRTREL-1), disturbances were bounded by ±0.2
in the x and y axes and ±0.05 in the z axis, corresponding to
the following D matrix:

D =

.22 0 0
0 .22 0
0 0 .052

 .
In the second trajectory (DIRTREL-2), the disturbance bounds
were set to ±0.4 in the x and y axes, corresponding to,

D =

.42 0 0
0 .42 0
0 0 .052

 .

Fig. 4. DIRTRAN (red), DIRTREL-1 (blue), and DIRTREL-2 (green)
quadrotor trajectories.

Figure 4 shows the nominal trajectories generated by
DIRTRAN and DIRTREL. The DIRTRAN trajectory takes
the shortest path to the goal state. However, it passes quite
close to several obstacles. The DIRTREL trajectories, on the
other hand, take longer paths to the goal but maintain greater
distances from each obstacle.

We performed closed-loop simulations with random wind
gusts of varying amplitudes. Disturbance inputs were gen-
erated by low-pass filtering white noise, then rescaling the
resulting disturbance trajectory so that its maximum amplitude
was equal to the desired value. Gust amplitudes in the x and
y directions were varied from 0.1 to 0.5, while amplitudes in
the z direction were held fixed at 0.05.

TABLE I
NUMBER OF CLOSED-LOOP QUADROTOR TRAJECTORIES WITH OBSTACLE

COLLISIONS OUT OF 100 TRIALS.

Max Gust DIRTRAN DIRTREL-1 DIRTREL-2
0.1 37 0 0
0.2 65 0 0
0.3 77 3 0
0.4 82 5 0
0.5 90 9 1

Table I shows the results of 100 trials performed at each
amplitude level. As expected, no collisions occurred using the



DIRTREL controllers for gust amplitudes within the bounds
imposed during planning (0.2 and 0.4 for for the first and
second cases, respectively) result in no collisions, while the
DIRTRAN controller was unable to avoid collisions with
obstacles in many trials at every amplitude level.

To offer a more generous comparison, we calculated the
closest distance between the quadrotor and an obstacle in the
nominal DIRTREL-2 trajectory, inflated the obstacles by that
distance, and re-planned a new trajectory with DIRTRAN.
Obstacle inflation (also called constraint shrinking) techniques
are a heuristic approach to improve robustness using traditional
planning methods. The corresponding closed-loop simulation
results are shown in Table II. Due to its ability to explicitly
reason about the closed-loop dynamics and how disturbances
act on particular states, DIRTREL offers significantly better
robustness than naive obstacle inflation.

TABLE II
NUMBER OF CLOSED-LOOP QUADROTOR TRAJECTORIES WITH OBSTACLE

COLLISIONS OUT OF 100 TRIALS AFTER PLANNING WITH INFLATED
OBSTACLES.

Max Gust DIRTRAN (INFLATED)
0.1 0
0.2 1
0.3 4
0.4 21
0.5 27

D. Robot Arm with Fluid-Filled Container

Finally, we use DIRTREL to plan the motion of a robot
arm carrying a fluid-filled container. The goal is to gently place
the container on a shelf while avoiding collisions. A dynamics
model of the seven-link Kuka IIWA arm was used, and bounds
of ±3 Newtons in the x and y directions and ±10 Newtons in
the z direction were placed on disturbance forces applied to the
end effector in DIRTREL to account for both uncertain mass
and un-modeled fluid-slosh dynamics inside the container.

In both algorithms, constraints were placed on the initial
and final poses of the arm. The same quadratic running cost
penalizing joint torque and quadratic terminal cost penalizing
the final velocity of the end effector were also applied in both
algorithms. The terminal cost was intended to encourage a
gentle placement of the container on the shelf. The following
weighting matrices were used in both the robust cost function
and LQR tracking controllers:

R = R` = 0.01 I7×7

Q = Q` =

[
100 I7×7 0

0 10 I7×7

]
QN = Q`

N =

[
500 I7×7 0

0 50 I7×7

]
.

The nominal trajectories produced by DIRTRAN and
DIRTREL are depicted in Figure 5. As expected, the
DIRTREL trajectory takes a wider path around the obstacle.
However, as in the quadrotor example, this kinematic behavior
can also be reproduced with DIRTRAN by inflating the
obstacle.

Fig. 5. Nominal end-effector trajectories produced by DIRTRAN (red) and
DIRTREL (blue).

To compare dynamic performance, we compute the RMS
deviations of the closed-loop system from the nominal tra-
jectory with each controller. Ten trials were performed while
varying the mass of the container and applying band-limited
white noise disturbance forces to the end effector to simulate
fluid slosh. DIRTRAN achieved an RMS state deviation of
0.0142 and an RMS input deviation of 20.05, while DIRTREL
achieved an RMS state deviation of 0.0054 and an RMS input
deviation of 19.55. The DIRTREL controller achieved sub-
stantially better closed-loop tracking performance while using
roughly the same control effort as the DIRTRAN controller.

VI. DISCUSSION

We have presented a new algorithm, DIRTREL, for robust
feedback motion planning. By bounding disturbance sets with
ellipsoids and assuming linear closed-loop feedback control,
we have derived a computationally tractable robust penalty
function and a method to account for state and input con-
straints along disturbed system trajectories. The resulting algo-
rithm produces nominal trajectories and closed-loop tracking
controllers which, together, outperform the standard combi-
nation of direct trajectory optimization followed by TVLQR
controller synthesis. DIRTREL inherits all of the advantages
of direct trajectory optimization methods, including the ability
to handle constraints on both the nominal and disturbed system
trajectories.

Several interesting directions remain for future work. While
we have focused on direct transcription methods in this paper
due to their ease of implementation, it is also possible to
derive similar robust versions of both collocation [9] and
pseudospectral methods [5]. DIRTREL assumes that the sys-
tem dynamics are linear near the nominal trajectory. While
this approximation breaks down for large disturbances and
highly nonlinear systems, we argue that it is consistent with
the approximations inherent in the use of linear tracking
controllers and does not entail a practical disadvantage. It
may, however, be possible to extend the algorithm to account



for some nonlinearity by incorporating deterministic sampling
ideas from the Unscented Kalman Filter [12].
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