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Lyapunov-based control laws capable of performing flat-spin recovery and spin-inversion maneuvers
for spin-stabilized spacecraft with reaction wheels are presented. The advantages of the Lyapunov-
based control laws over previous approaches include the ability to explicitly account for actuator
limits and a proof of almost-global asymptotic stability. Numerical examples are presented to illus-
trate the performance of the controllers.

Nomenclature
h = angular momentum in body-fixed axes
I = inertia tensor in body-fixed axes
1n×n = n × n identity matrix
J = inverse inertia tensor in body-fixed axes
k = discrete time index
t = time
T = nutation period
u = matrix of sampled control inputs
V = Lyapunov function
x = matrix of sampled states
δt = time step
ρ = rotor angular momentum in body-fixed axes
ω = angular velocity in body-fixed axes

I. Introduction
Flat-spin recovery is a classic problem in spacecraft dynamics and control with a rich history dating back to the very
first man-made satellites [1]. Fundamentally, the problem has its roots in the geometry of rockets and the fairings
that house satellites during launch, which tend to be long and narrow. As a result, most spacecraft have prolate mass
distributions, at least in their launch configurations.

In the presence of energy dissipation due, for example, to fluid slosh or flexible structural elements, a spacecraft
spinning about its long axis, or minor axis of inertia, will tend to transition into a spin about its major axis, commonly
known as a flat spin. Maintaining a minor-axis spin, therefore, requires active control. While spin-stabilized satellites
have largely been supplanted by three-axis stabilized designs, many missions still call for spacecraft to spin about
their minor axes temporarily, especially during critical phases like deployments and orbit insertion maneuvers [2].
Additionally, low-cost small satellites are frequently designed as minor-axis spinners, both to provide stabilization and
to meet other mission requirements [3–5].

Many authors have analyzed variations of the flat-spin recovery problem over the past several decades. In its most
basic form, the problem entails controlling a spacecraft in such a way that it transitions from a major-axis spin to a
minor-axis spin. Early methods focused on utilizing thrusters as actuators [2, 6], however these have the disadvan-
tage of consuming limited propellant resources. In the 1970s, Gebman and Mingori used perturbation methods to
analyze control techniques for flat-spin recovery of dual-spin spacecraft in which actuation is provided by a motor
applying internal torques parallel to the desired spin axis [7]. While these methods do not consume fuel, they have the
disadvantage of leaving the spacecraft with residual nutation that must be damped out by some other means.

More recently, Lawrence and Holden have developed Lyapunov-based control laws for a spacecraft with a single
reaction wheel mounted transverse to the desired spin axis [8]. While their method offers some asymptotic stability
guarantees, their controller suffers from one potentially major drawback: It cannot determine the sign of the final
body-frame angular momentum vector. Depending on initial conditions, the spacecraft could find itself rotated 180°
from the desired orientation.

The problem of effecting a 180° inversion of a spacecraft’s spin axis has often been treated separately from flat-spin
recovery. Rahn and Barba have proposed a method for “spin polarity control” using thrusters [9]. Beachey and Uicker
describe a method for inverting the spin of an axisymmetric spinning spacecraft using a single reaction wheel [10].
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Uicker has also proposed a method for inverting a spacecraft’s spin axis by manipulating its mass distribution [11].
To the author’s best knowledge, the first unified treatment of flat-spin recovery and spin inversion, in the form of

a single controller capable of uniquely determining a spacecraft’s final spin axis, was given by Myung and Bang [12].
They make use of a control technique known as predictive control [13] to derive a nonlinear feedback law for a
spacecraft with a single reaction wheel. While they demonstrate numerically that their controller converges to the
desired spin axis in many cases, they do not give strong stability guarantees. Additionally, their controller does not
explicitly account for actuator limits and must be carefully tuned based on system parameters.

In this paper, a family of nonlinear feedback control laws capable of driving a spinning spacecraft from any initial
state to a desired minor-axis spin using reaction wheels is developed. The controllers provide almost-global asymptotic
stability and can explicitly accommodate actuator limits. Additionally, the feedback laws have a simple and explicit
mathematical form and are easy to tune and implement.

The paper proceeds as follows: Section II provides a review of relevant spacecraft dynamics as well as Lyapunov
stability theory. Next, sections III and IV introduce and analyze several candidate Lyapunov functions. Section V
analyzes the global stability properties of controllers based on a particular choice of Lyapunov function. Section VI
then discusses the implementation of a family of control laws which are almost-globally asymptotically stabilizing.
The control laws are then demonstrated in numerical examples in section VIII. Finally, conclusions are outlined in
section IX.

II. Background
This section provides brief reviews of gyrostat dynamics and Lyapunov stability. It also serves to introduce the notation
and terminology used throughout the rest of the paper. Thorough treatments of Lyapunov stability are given by
Khalil [14] and Slotine and Li [15], while a thorough treatment of gyrostat dynamics is given by Hughes [16].

A. Gyrostat Dynamics

A gyrostat is a system of coupled rigid bodies whose relative motions do not change the total inertia tensor of the sys-
tem. This abstraction serves as a practical mathematical model for a spacecraft with reaction wheels. The fundamental
differential equation governing the motion of a gyrostat is [16],

I · ω̇ + ω × (I · ω + ρ) + ρ̇ = τ (1)

where I is the symmetric positive-definite inertia tensor of the gyrostat, ω is the body angular velocity, ρ is the total
angular momentum stored in the rotors, and τ is the external torque applied to the gyrostat. Assuming external torques
can be neglected, the total system angular momentum,

h = I · ω + ρ (2)

is conserved, and the gyrostat equation can be rewritten as,

ḣ = h × J · (h − ρ) (3)

where J = I−1.
The dynamics of equation (3) have some properties that will be useful in the controller development to follow.

First, because ‖h‖ is conserved, h is confined to the surface of a sphere, which will be referred to as the momentum
sphere. Second, for a fixed value of ρ, the solutions to equation (3) are periodic. In fact, h(t) can be expressed in
closed form in terms of Jacobi elliptic functions [17, 18]. The details of these solutions will not be of concern in
this paper, only their existence and periodicity. Lastly, in the case where ρ = 0, the uncontrolled system has, in
general, six equilibria located along the eigenvectors of J. The equilibrium points corresponding to the largest and
smallest eigenvalues of J (commonly referred to as the “minor” and “major” axes, respectively) are stable, while those
corresponding to the intermediate eigenvalue are unstable [16].

Figure 1 depicts a momentum sphere with several trajectories marked in blue and the equilibria marked in green.
Each of the four stable equilibria are surrounded by stable periodic orbits. The trajectories marked in red in figure 1
are known as separatrices [16]. They connect the two unstable equilibria and separate trajectories orbiting the other
four equilibria.

B. Lyapunov Stability

Lyapunov stability theory provides a means for determining the stability of equilibrium points of nonlinear dynamical
systems. The method provides a generalization of the concept of energy dissipation in damped mechanical systems.
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Figure 1. Momentum sphere with equilibria and example trajectories

The necessary ingredients are a system of the form,

ẋ = f (x) (4)

where x ∈ Rn, an equilibrium point x∗ such that,
f (x∗) = 0 (5)

and a scalar function V(x) with the property,
V(x) ≥ 0 (6)

where V(x) = 0 only at the point x = x∗. If the derivative of V(x) along trajectories of the system,

V̇(x) =
∂V
∂x

dx
dt

= ∇V(x) · f (x) (7)

is negative-semidefinite, the system is said to be stable in the sense of Lyapunov. If the stricter condition V̇(x) < 0
everywhere except at x = x∗, the system is asymptotically stable. The main deficiency of Lyapunov stability theory is
that there are no general methods for finding or constructing a function V(x), which is known as a Lyapunov function.

For a dynamical system with control inputs,
ẋ = f (x, u) (8)

where x ∈ Rn and u ∈ Rm, a Lyapunov function can be used to find stabilizing control laws. In the controlled case, the
stability condition becomes:

V̇(x, u) = ∇V(x) · f (x, u) ≤ 0 (9)

A controller can then be found by, for example, solving the following optimization problem,

argmin
u

∇V(x) · f (x, u)

subject to u ∈ U
(10)

whereU is the set of possible control inputs. If u can be chosen such that V̇(x, u) < 0 for every x 6= x∗, the closed loop
system will be asymptotically stable.
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III. Candidate Lyapunov Functions
As motivation, two candidate Lyapunov functions are considered. The first is a quadratic function based on kinetic
energy,

VQ =
1
2

hd · J · hd −
1
2

h · J · h (11)

while the second is a linear function,
VL = hd · J · hd − hd · J · h (12)

where hd is the desired minor-axis equilibrium angular momentum vector. Since hd corresponds to a spin state with
maximum kinetic energy, it is easy to show that both VQ and VL are non-negative everywhere on the momentum
sphere, satisfying condition (6).

Looking first at VQ and taking its derivative along trajectories of the system yields:

V̇Q =
∂VQ

∂h
dh
dt

= h · J · h × J · ρ (13)

As expected, when ρ = 0, VQ does not vary. With an appropriate choice of ρ, the condition V̇Q ≤ 0 can always be
satisfied, indicating that the closed loop system will be stable. It must be noted, however, that VQ is symmetric and
possesses a pair of global minima located at h = hd and h = −hd. As a result, the system can only be guaranteed
to converge to one or the other of these equilibrium states, with the result depending on initial conditions. Figure 2
depicts a heat map of the function VQ on the momentum sphere, with hd marked in green.

Figure 2. Heat map of candidate Lyapunov function VQ

Unlike VQ, VL has the advantage of possessing a single global minimum on the momentum sphere at h = hd, as
can be seen in figure 3. Therefore, if a control law can be found which drives VL to zero, the system is guaranteed to
converge to hd. Unfortunately, VL also suffers from several disadvantages. Evaluating its derivative with respect to
time results in:

V̇L =
∂VL

∂h
dh
dt

= −hd · J · h × J · (h − ρ) (14)

Note that, unlike what was encountered with VQ, when ρ = 0, V̇L 6= 0, meaning that VL varies along uncontrolled
system trajectories. In the presence of actuator limits, where the maximum-possible rotor momentum ‖ρ‖ might be
much smaller than ‖h‖, there may be situations in which the condition V̇L ≤ 0 cannot be satisfied.

IV. Periodic Averaging
A variation on equation (12) will now be considered that mitigates some of the problems encountered in the previous
section. A new candidate Lyapunov function V ′L is obtained by averaging VL over periodic orbits of the uncontrolled
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Figure 3. Heat map of candidate Lyapunov function VL

system, where T is the nutation period:

V ′L = hd · J · hd −
1
T

∫ t0+T

t0
hd · J · h(t) dt (15)

It is worth noting that V ′L is a function only of the current state h. While it does not have a convenient closed-form
expression like VL or VQ, it could be, for example, precomputed over the entire momentum sphere and tabulated in a
look-up table.

By construction, V ′L takes on the same value at every point along a given periodic orbit. Therefore, it does not
vary along trajectories of the uncontrolled system. Also, like VL, V ′L has a single global minimum at h = hd, as
shown in figure 4. Unfortunately, V ′L still suffers from one important deficiency: As can be understood based on

Figure 4. Heat map of candidate Lyapunov function V′L

simple symmetry considerations and seen in figure 4, V ′L is constant over the entirety of the regions surrounding the
major-axis equilibria. As a result, V̇ ′L = 0, and the system will not converge to hd from initial conditions in those
regions.
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A Lyapunov function will now be formed from the sum of VQ and V ′L, combining the behavior of the former in
regions near the major-axis equilibria with the behavior of the latter in regions near the minor-axis equilibria:

V =
3
2

hd · J · hd −
1
T

∫ t0+T

t0
hd · J · h(t) +

1
2

h(t) · J · h(t) dt (16)

As with equation (15), the integral in equation (16) is taken over periodic orbits of the uncontrolled system. Figure 5
shows a heat map of V on the momentum sphere with hd marked in green.

Figure 5. Heat map of Lyapunov function V

An expression for V̇ will now be sought. To aid in this process, the integral in equation (16) will be discretized.
First, sampled versions of h and ρ are defined,

hk = h(t0 + kδt) (17)

ρk = ρ(t0 + kδt) (18)

where δt = T/N and N is the number of samples. Next, the following matrices, which consist of uniform samples of
the state and control inputs, are defined:

xk =


hk
...

hk+N−1

 uk =


ρk
...

ρk+N−1

 (19)

In terms of xk and uk, the integral in equation (16) can be approximated as,∫ t0+T

t0
hd · J · h +

1
2

h · J · h dt ≈
1
N

xᵀd J̄ xk +
1

2N
xᵀk J̄ xk (20)

where xd is,

xd =


hd
...

hd

 (21)

and J̄ is the following block-diagonal matrix:

J̄ =


J 0 · · · 0
0 J · · · 0
...

...
. . .

...
0 0 · · · J

 (22)
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The next step in determining V̇ is to calculate the following finite difference:

∆V = V(xk+1) − V(xk) =
1
N

xᵀd J̄ xk +
1

2N
xᵀk J̄ xk −

1
N

xᵀd J̄ xk+1 −
1

2N
xᵀk+1 J̄ xk+1 (23)

Thanks to periodicity, the system dynamics along an orbit can be approximated as,

xk+1 = Axk + Bkuk (24)

where A is a cyclic permutation matrix,

A =


0 13×3 0 · · · 0

0 0 13×3
... 0

...
...

. . . . . .
...

0 0 · · · 0 13×3
13×3 0 · · · 0 0


(25)

and Bk is the following block-diagonal matrix.

Bk = −δt


h×k J 0 · · · 0

0 h×k+1J 0
...

...
. . . . . . 0

0 · · · 0 h×k+N−1J

 (26)

The expression h× used in equation (26) denotes the formation of a 3 × 3 skew-symmetric cross-product matrix from
the elements of h:

h× =

 0 −h3 h2
h3 0 −h1
−h2 h1 0

 (27)

Substituting equation (24) into equation (23) yeilds the following expression for ∆V:

∆V =
1
N

xᵀd J̄ xk −
1
N

xᵀd J̄ A xk −
1
N

xᵀd J̄ Bk uk

+
1

2N
xᵀk J̄ xk −

1
2N

xᵀk Aᵀ J̄ A xk −
1
N

xᵀk Aᵀ J̄ Bk uk −
1

2N
uᵀk Bᵀ

k J̄ Bk uk (28)

Because A is simply a permutation matrix, several terms in equation (28) cancel each other, resulting in:

∆V = −
1
N

xᵀd J̄ Bk uk −
1
N

xᵀk Aᵀ J̄ Bk uk −
1

2N
uᵀk Bᵀ

k J̄ Bk uk (29)

Finally, V̇ is recovered by taking a limit:

V̇ = lim
N→∞

∆V
δt

=
1
T

∫ t0+T

t0
(h + hd) · J · h × J · ρ dt (30)

V. Almost-Global Asymptotic Stability
The expression inside the integral in equation (30) is linear in the rotor momentum ρ. To make this more explicit, the
following vector is defined,

b(h) = −J · h × J · (h + hd) (31)

such that:
b · ρ = (h + hd) · J · h × J · ρ (32)

In terms of b, the problem of choosing a control input such that V̇ ≤ 0 reduces to choosing ρ such that b · ρ ≤ 0.
Looking again at equation (30), it is clear that the condition for asymptotic stability, V̇ < 0, can be met as long as

b · ρ < 0 can be achieved at some point along every periodic orbit of the uncontrolled system. For the fully actuated
case where the spacecraft has at least three reaction wheels, this is possible everywhere on the momentum sphere
except at the single point h = −hd, which is simultaneously an equilibrium point of the system and a point at which
b = 0. This failure is to be expected as, in general, constant (time-invariant) feedback laws cannot achieve global
asymptotic stability for systems with rotational degrees of freedom [19]. In practice, however, this does not present
a problem. Since −hd is an unstable equilibrium of the closed-loop system, perturbations will ensure that the system
does not remain there.
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VI. Controller Implementation
If sufficient reaction wheel torque is available, wheel dynamics can effectively be ignored and direct control over ρ
can be assumed. In this case, equation (31) can be applied directly to derive very simple controllers. For example, one
possible feedback law is,

ρ = −kb (33)

where k is a scalar gain.
The optimal choice of ρ, in the sense of decreasing V the fastest, can be found by minimizing b · ρ, as in equation

(10). In the particular case of a spacecraft with three reaction wheels, each aligned with an axis of the body coordinate
frame, such a control law assumes the following form in body coordinates,

ρ = −ρmax sign(b) (34)

where ρmax is the maximum wheel momentum and sign(b) denotes the element-wise signum function:

sign(x) =

 1 : x > 0
0 : x = 0
−1 : x < 0

(35)

In cases where reaction wheel torque is limited and the assumption of direct control over ρ cannot be made, a
control law that specifies ρ̇ and respects torque limits is needed. One such controller can be derived by first defining a
smoothed version of the controller (34), where the signum function is replaced with a hyperbolic tangent:

ρ = −ρmax tanh(αb) (36)

The scalar parameter α in equation (36) can be tuned to set the maximum commanded torque ρ̇max. Equation (36) is
then differentiated with respect to time, which yeilds,

ρ̇ =
∂ρ

∂b
∂b
∂h

dh
dt

= −ρmaxα diag(sech2(αb)) J
[
(J(h + hd))× − h×J

]
h×J(h − ρ) (37)

where diag(x) indicates the formation of a diagonal matrix from the elements of x:

diag
([x1

x2
x3

])
=

x1 0 0
0 x2 0
0 0 x3

 (38)

While equation (37) can, in principle, provide explicit wheel torque commands, the stability results of the previous
section are specified as conditions on the wheel momenta. Therefore, to ensure stability, an actual implementation
should track the wheel momenta specified by equation (36) using, for example, PID motor controllers on each wheel.

VII. Disturbance Torques
According to the analysis of section V, stability of the closed-loop system does not depend on the momentum storage
or torque capabilities of the reaction wheels. In theory, the system should converge to hd for even very small values
of ρmax and ρ̇max, though it may take a long time. In practice, however, disturbance torques due to both internal
dynamics (e.g. fluid slosh and flexible structural modes) and external forces (e.g. atmospheric drag and solar pressure)
can prevent convergence or cause the system to become unstable. This section develops some conditions on actuator
performance under which convergence can be guaranteed, given bounds on the disturbance torque.

Returning to the equation of motion for the gyrostat, a disturbance term d is added to equation (3):

ḣ = h × J · (h − ρ) + d (39)

No particular form is assumed for the disturbance, only that an upper bound can be placed on its magnitude. Repeating
the analysis of section IV, the derivative of the Lyapunov function V̇ is sought. Equation (24) now reads,

xk+1 = Axk + Bkuk + dk (40)

where dk is defined in the same way as xk and uk in equation (19), and consists of uniform samples of the disturbance
input:

dk = δt


d(t0 + kδt)

...
d(t0 + (k + N − 1)δt)

 (41)
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Substituting equation (40) into equation (23) reveals a new form of equation (29) with some additional terms:

∆V = −
1
N

xᵀd J̄ Bk uk −
1
N

xᵀk Aᵀ J̄ Bk uk −
1

2N
uᵀk Bᵀ

k J̄ Bk uk

−
1
N

xᵀd J̄ dk −
1
N

xᵀk Aᵀ J̄ dk −
1
N

uᵀk Bᵀ
k J̄ dk −

1
2N

dᵀ
k J̄ dk (42)

Taking a limit of equation (42) yields an expression for V̇ that includes disturbance torques:

V̇ = lim
N→∞

∆V
δt

=
1
T

∫ t0+T

t0
(h + hd) · J · h × J · ρ − (h + hd) · J · d dt (43)

The Lyapunov stability condition V̇ ≤ 0 then becomes:

(h + hd) · J · h × J · ρ ≤ (h + hd) · J · d (44)

Given an upper bound dmax on the magnitude of d, equation (44) becomes:

(h + hd) · J · h × J · ρ ≤ −dmax‖J · (h + hd)‖ (45)

When sizing actuators in an engineering application, they should be chosen such that their maximum momentum
storage capability ρmax allows the condition of (45) to be met given all anticipated values h, hd, and J.

VIII. Examples
This section presents two simulations that illustrate the performance of the control laws developed in section VI in
the presence of model uncertainty and actuator limits. Both simulations are performed using MATLAB’s ODE45
variable-step Runge-Kutta solver [20] with default error tolerances. To demonstrate the robustness of the controllers,
the following nominal inertia is used in the controller,

I =

2 0 0
0 1.5 0
0 0 1

 (46)

while the true inertia used to simulate the dynamics differs by 5% in the the moments of inertia and 5° in the orientation
of the principal axes:

Itrue =

 2.0961 −0.0455 0.0299
−0.0455 1.4271 0.0167
0.0299 0.0167 1.0517

 (47)

Additionally, white noise is added to the simulated gyro measurements fed to the controller.
The first simulation illustrates the performance of the controller (36) in a flat-spin recovery maneuver on a space-

craft with three reaction wheels. The initial angular momentum is,

h0 =

10
0

 (48)

and the desired final angular momentum is set to,

hd =

00
1

 (49)

which corresponds to an angular velocity of roughly 10 RPM about the minor axis. The maximum reaction wheel
momentum is ρmax = 0.01 N·m·s, and the maximum reaction wheel torque is ρ̇max = 0.1 N·m. The parameter α is set
to a value of 60, which ensures that commanded torques are within the actuator saturation limits.

Figure 6 shows the closed-loop trajectory of the system, while figures 7–9 show the system momentum, reaction
wheel momentum, and reaction wheel torque components, respectively. Rapid convergence to the desired minor axis-
spin is achieved. The residual error in the angular momentum components and non-zero steady-state reaction wheel
momenta are due to the error in the inertia used in the controller.

The second test case uses the same system and controller parameters but a different initial condition to illustrate
the control law’s ability to perform spin inversion maneuvers. The initial angular momentum is,

h0 =

 0
0
−1

 (50)
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Figure 6. Flat-spin recovery trajectory
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Figure 7. Flat-spin recovery momentum components

and the desired final angular momentum is again set to:

hd =

00
1

 (51)
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Figure 8. Flat-spin recovery reaction wheel momenta
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Figure 9. Flat-spin recovery reaction wheel torques

Figure 10 shows the closed-loop trajectory of the system, while figures 11–13 show the system momentum, reac-
tion wheel momentum, and reaction wheel torque components, respectively. Once again, the controller demonstrates
rapid convergence. This example also illustrates the behavior of the closed-loop system around the point −hd. As
discussed in section V, noise and modeling errors ensure that the system is perturbed away from this unstable equilib-
rium.

IX. Conclusions
The control laws developed in this study provide a unified solution for both flat-spin recovery and spin inversion of
spin-stabilized spacecraft. They are shown to be almost-globally asymptotically stabilizing using a Lyapunov function
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Figure 10. Spin inversion trajectory
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Figure 11. Spin inversion momentum components

argument, and their performance is also demonstrated in the presence of model errors and actuator limits through
numerical simulation. Lastly, the controllers have a simple mathematical form and are easy to tune, making them
practical for implementation in flight software.
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Figure 12. Spin inversion reaction wheel momenta
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Figure 13. Spin inversion reaction wheel torques
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