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Abstract

A set of measurement techniques for characterizing laboratory plas-
mas, as well as measuring the capacitance and current flow associated
with a conductor suspended in such plasmas are developed. Emphasis is
placed on modeling spacecraft in the ionosphere for engineering applica-
tions. Some measurement results are presented for a xenon plasma with a
number density of 6.6x10° cm™ and temperature of 1320 eV, as well as
an analysis of sheath-enhanced capacitance of thin wires with applications
for Lorentz-actuated spacecraft.
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1 Introduction

The behavior of plasma around charged objects has important implications for
the operation of spacecraft in Earth orbit. Altitudes in excess of a thousand kilo-
meters are permeated by a complex and time varying plasma environment that
can impart current to spacecraft, form electrostatic sheaths around them, and
build up enormous potentials on electrically conducting surfaces. For the design
engineer, knowledge of these effects can not only be used to mitigate damage
to spacecraft, but, if properly controlled, may provide a source of propellantless
propulsion.

The dynamics of plasmas are very complex and, in spite of decades of re-
search, their behavior can not be fully analytically modeled. Difficulties arise
from non-linearity of the governing differential equations, as well as the need
to take into account both fluid- and electro-dynamics in a consistent way. To
overcome these difficulties numerical methods or empirical measurements must
be used. We have taken the second approach, developing an experimental set
up and series of measurement techniques by which a laboratory plasma can be
generated and characterised. Following this, the sheath thickness, capacitance,
and current flow of a conductor suspended in the plasma can be measured as a
function of bias potential.

With the knowledge gained from initial experiments, conductors and plasma
parameters can be appropriately scaled to model the ionospheric plasma en-
vironment for engineering applications. One such application, propellantless
spacecraft actuation using the Lorentz force, will be presented and analyzed.
Further experiments will allow iterative testing and refinement of this technol-

ogy.

2 Plasma Theory

Plasmas are ionized gasses. Their physical analysis is complicated by the need to
take into account the electrodynamic interactions of their charged constituent
particles in addition to the usual kinetic theory of gasses. This section will
provide the reader with a survey of basic plasma theory relevant to the discus-
sions in later sections. References will be given throughout for more detailed
derivations and further reading.

2.1 Physical Parameters

To describe a plasma in a given region of space, several parameters may be
required. We will assume for the remainder of this report that the plasma
being treated consists only of electrons and a single ion species. Given these
assumptions, the relevant parameters are then the number-density of electrons,
ne and ions, m;, their masses, m. and m;, their charges, ¢. and ¢;, and their
temperatures, T, and T;. Here temperature is used as a statistical measure of



the average kinetic energy per particle (electron or ion), by way of Boltzmann’s
constant, K p, which has units of energy-per-temperature.

An important point to make note of early in this discussion is that masses of
the two constituents of plasma, electrons and ions, generally differ by four to five
orders of magnitude. For example, the electron mass is m, ~ 9.11 x 10~ 3'kg,
while the mass of a hydrogen ion is mg ~ 1.674 x 1072"kg and a xenon ion
is mye = 2.181 x 1072°kg. Assuming that a plasma is in thermal equilibrium
(T, = T;) and using Boltzmann’s constant (E = KT o mv?) implies that the
ratio of average electron speed to average ion speed is given by

=/ (1)

so that the electrons in a plasma, on average, move thousands of times faster
than the ions.

2.2 Plasma Oscillations

A useful approximation can be made by assuming that, on short timescales, the
ions in a plasma are completely stationary while the electrons are allowed to
move in the presence of their combined electric field. This can be visualized as
a fixed, homogeneous sheet of ions with charge density n;q; contained in the
same volume as a mobile homogeneous sheet of electrons with charge density
neqe = —n;q;. If the mobile electron sheet is displaced a small distance x from
equilibrium, it will be pulled back by the coulomb force to it’s original position.
Newton’s Second Law gives us

d*>x Eq.
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where F is the electric field. Gauss’s law gives a way of calculating F from the
charge density:
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Substituting eq. (3) into eq. (2) gives a simple harmonic oscillator equation
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This is known as the plasma electron frequency[9][13], and is seen experimentally
as a resonant peak in the frequency response of the plasma to radio frequency
excitations.

2.3 Debye Length and Sheaths

An important assumption made in the derivation of the plasma frequency is
quasineutrality - the presence of roughly equal amounts of positive and negative
charge averaged over the whole extent of the plasma. While quasineutrality is
a fundamental defining property of a plasma, it can be violated locally, giving
rise to some very important phenomena.

Let us place a negatively charged sphere into a large volume of stationary
plasma in thermal equilibrium. Because the charge carriers in plasma are mo-
bile, they will move in the presence of the electric field of the sphere. The
charge carriers themselves, however, also contribute to the total electric field in
the space surrounding the sphere, so that the potential is not the % coulomb po-
tential of a sphere in vacuum. To calculate the potential, we must use Poisson’s
equation
r
€0

V2o =

which, because of the spherical symmetry of the problem reduces[10] to
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To obtain an expression for the charge density p in terms of the potential, we
will make use of the Boltzmann distribution[3][7], which gives an expression for
the fraction of particles with a given energy E,,.

Ty e—Fa/(KpT)
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Noting that the bottom of eq. (7) is a constant and substituting in the total
energy of an electron (kinetic plus potential) gives

N o e~ (Mv*/24+4.®)/(KpT.)

Since we only care about the dependence on ® here, and not the thermal energy
of the electrons, we will integrate over all velocities|[7] to obtain

Ne = neooe_Qe‘i’/(KBTe) (8)

where n¢ is the equilibrium electron density before the sphere was inserted into
the plasma, and is also the density an infinite distance away from the sphere. If
we assume that the potential energy is much smaller than the thermal energy
of the electrons (¢.® < KpT.), eq. (8) can be linearized, giving

M = Tene (1 — P (K(]J;Te)) (9)




Now, substituting into eq. (6) and simplifying gives a linear second-order dif-
ferential equation for ®[9]
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with general solution
C
O(r) = Ze /D
r
where C'is a constant of integration and
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is known as the Debye length. The constant C' can be found by enforcing that, in
the limit as r approaches zero, the potential must match the standard coulomb
potential for a sphere in vacuum, giving

1 Qsphere
(I) _ sphere T/)\D 1 1
(r deg T € (11)

where Qsphere is the total charge on the sphere.

The Debye length serves as a sort of “characteristic length scale” for phe-
nomena in a plasma. In the case of our charged sphere, it is the thickness of a
concentric region in which electrons are depleted and there are mostly positive
ions. Beyond this region, known generally as a sheath, the plasma will effec-
tively shield out the potential of the sphere, limiting the distance over which
electrostatic interactions can occur to about a Debye length. This has important
implications for both the capacitance of conductors and the ability to collect
current from the plasma.

While the Debye length gives a general scale for plasma sheaths, it is at best
a rough “order of magnitude” approximation to their true extent. Solving for the
actual sheath thickness around a charged surface for any practical situation is an
intensive computation that can only be accomplished using numerical methods
(see [11] and [5]). For the purposes of this paper, an analytical fit to the data
of Laframboise[11] due to Blackwell et. al.[2] will be used.

2
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Note that eq. (12) explicitly includes the sphere’s radius, unlike the Debye
length, and also that it is only valid for negative biased potentials.
3 Measurement Techniques

Now that we have outlined the basic parameters of interest when studying a
plasma, the practical question of how to measure these parameters arises. The



two methods presented here make use of the same spherical metal probe inside
the plasma chamber, and only differ in the measurement equipment connected
via cables outside the chamber and in post-measurement analysis. This has the
advantage that both methods may be used sequentially under the same test
conditions to check each other. The first method, the plasma impedance probe,
is a relatively modern frequency domain approach that is conceptually simple
and can give very clear and accurate measurements of sheath thickness, plasma
frequency, and electron number density while varying the probe bias potential.
The second method, the Langmuir probe, is the classical means of determining
the electron temperature and number density of a plasma. While it requires
only very simple apparatus and measurements of T, are fairly straight forward,
the analysis needed to extract n. from Langmuir probe data is difficult and
does not produce very precise results. For that reason, we will focus on using
the impedance probe to measure sheath thickness and electron number density,
while relying on the Langmuir probe for measurements of electron temperature.

3.1 The Plasma Impedance Probe

The impedance probe consists of a single, small, spherical probe suspended in
the plasma which is then externally connected via coaxial cable to a network
analyzer. It relies on the assumption that the probe-plasma system will respond
linearly to small signals at any negative bias voltage, and can thus be modeled
as an RLC circuit[2][1].
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Figure 1: Plasma Impedance Probe Circuit Model

The total impedance of the circuit in figure (1) is

1 1
= - + - -
JwCsp JjwCo + Ry ijwl,

(13)

where Cj, is the sheath capacitance, Cy is the vacuum self-capacitance of the
spherical probe, and L, and R, are the plasma inductance and resistance, re-



spectively. These are given below in terms of other more typical plasma quan-
tities.

Co = 4megTsphere, Lp = #w%e, R,=vL, (14)
CS S ere
h__ Tsphere ¥ 5 (15)

CO + Csh Tsphere + 2s

Note that v in the expression for R, is the plasma collision frequency. While
the impedance probe method can be used to determine the collision frequency,
it is not directly relevant to our goals and it will suffice to say that it does not
affect the measurement of wpe or wgp.

Some algebraic manipulation of eq. (13) reveals that there are two points at
which the reactance (imaginary part of Z) becomes zero. These are resonances,
or local extrema in the Impedance vs. frequency plot. One occurs at the plasma
electron frequency, given by eq. (5), while the other is known as the sheath
resonance, and occurs at a lower frequency given by eq. (16).

Co
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To actually take an impedance measurement, a vector network analyzer

(VNA) is connected to the probe and properly calibrated to eliminate errors

due to connectors and cabling. The VNA drives the probe with a wide-band

signal and produces a plot of the complex reflection coefficient as a function of
frequency. Reflection coefficient is defined[8] as

F:Z_ZO
Z + Zy

where 7 is the characteristic impedance of the measuring device and cabling.
The impedance of laboratory test equipment and coaxial cable is almost uni-
versally 50 ohms, so with this assumption we can easily solve for the probe
impedance in terms of the reflection coefficient.
1+T
Z =50 17
(1) (1)

Figure (2) shows a MATLAB simulation of the impedance curve for a 1 cm
radius sphere in a plasma with 7, = 5000 K and n. = 107ecm~3. The code for
this simulation is included in appendix A.
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Figure 2: Simulated Probe Impedance

Note that there are two local extrema. The local minimum at around 10
MHz corresponds to the sheath resonance, and is used to extract the sheath
capacitance and sheath thickness using egs. (13) and (15). The local maximum
at around 30 MHz is the plasma electron frequency, and can be used to calculate
the electron number density using eq. (5). Also, note that both of these extrema
in the magnitude plot correspond to zero crossings on the phase plot. This fact
is of practical utility when trying to analyze noisy data, as it provides a clear
and well-defined point for determining the two frequencies.

3.2 The Langmuir Probe

The Langmuir probe itself is a very simple apparatus. It consists of only a spher-
ical or cylindrical conductor suspended in the plasma and connected externally
to a power supply and ammeter. By sweeping the power supply voltage, a plot
of current vs. voltage is made (commonly referred to as an I-V curve).
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Figure 3: Typical Langmuir Probe I-V Curve

Because of the high relative mobility of the electrons in the plasma, many
more electrons will naturally strike the probe than ions. This produces a net
negative charge on the probe and a resulting negative floating potential ®;.
This floating potential, the potential at which no current flows through the
probe, is directly related to the electron temperature 7T,.. Intuitively, it is a
potential energy barrier large enough that it cannot be overcome by the thermal
energy of most electrons, or e®y; > KgT,. An explicit expression[4] relating
@y to T, is given by eq. (18).

KbTe m;
o= (T ) () (18)

By adjusting the power supply voltage until zero current is displayed on the
ammeter, ¢ can be found and used to solve for T,. As a practical note, the
current displayed by the ammeter is subject to considerable noise, and averaging
will greatly improve the ability to take accuracy of measurements.

The determination of electron number density from a Langmuir probe I-V
curve is considerably more difficult and error-prone, and will not be treated here
since the impedance probe method has proven more reliable. For the interested
reader, the original paper by Langmuir and Mott-Smith[12] is still relevant,
while the more recent exposition of Chen[4] is more thorough.

4 Experimental Setup

Over a series of experiments, we have refined the application of the Langmuir
and impedance probe techniques to the characterization of a xenon plasma and
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measurements of sheath capacitance for a spherical probe. Our setup consists
of a cylindrical vacuum chamber one meter in diameter and one meter in length
which is pumped by a mechanical roughing pump and a diffusion pump capable
of reaching pressures below 1076 Torr. Inside this chamber are the cathode and
heater from an ion thruster, connected using a digital regulator to an exter-
nal xenon tank. Opposite the cathode, a one inch diameter stainless steel ball
is mounted on a stand and connected via a coaxial cable to measuring equip-
ment outside the chamber. This ball may be substituted for other conductor
geometries, for example thin wires, though this has yet to be performed.

Figure 4: View Inside the Vacuum Chamber

Outside the chamber, the probe is connected in one of two configurations.
For I-V measurements, it is connected to a Keithley 6485 picoammeter capable
of making current measurements down to 10 nanoamps, then to a bench power
supply. For impedance measurements, an HP 8753D vector network analyzer
was used. A choke circuit was designed so that the probe could be biased by
the bench power supply while simultaneously connected to the VNA.

11
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Figure 5: Choke Circuit Diagram

Calibration of the VNA is very important. Before a test run, the chamber
must be opened and the sphere removed from its test stand so that the line can
be terminated with open circuit, short circuit, and 50 ohm test loads. Data
taken by the VNA for these three test loads can then be used to eliminate the
effects of the cable and choke circuit so that only the impedance of the sphere
and plasma are measured.

After calibration, a typical test run consists of sealing and pumping the
vacuum chamber below 10~ Torr, then conditioning and starting the cathode.
With the cathode producing plasma, the chamber pressure typically rises to
about 10~* Torr. Now, reflection coefficient data may be taken using the VNA
while varying probe bias potential, flow rate, and cathode current. Once the
desired data is collected using the VNA, the probe may be disconnected and
switched to the Langmuir probe configuration using the picoammeter. By vary-
ing the probe bias potential while holding the other experimental parameters
constant, the floating potential may be found. This can be repeated for all of
the parameter sets tested using the VNA so that both temperature and density
information is available.

5 Experimental Results

Experimental work has so far been concentrated on achieving reliable plasma
characterization and demonstrating the ability to measure sheath thickness for
a sphere. Two runs have been performed with the full setup described in the
previous section. The first was performed over a very broad frequency range
and for many different xenon flow rates and probe bias potentials. Unfortu-
nately, the data form this run was very noisy and not of sufficient resolution to
obtain accurate frequency measurements. It did, however allow us to narrow
the frequency range of the VNA, and hence achieve much better resolution on
the second run.

12



5.1 Variation in Sheath Thickness with Probe Bias

The first set of measurements were taken at a fixed xenon flow rate of 0.7 sccm
and fixed heater and cathode currents of 4 and 0.5 amps respectively. Impedance
data was then recorded at increasing probe bias potentials. Figure (6) shows the
magnitude and phase of the probe impedance vs. frequency for bias potentials
from 0 to -20 volts.

Magnitude
3,
T
(
\

Phase (rad)

Frequency (Hz)

Figure 6: Probe Impedance vs. Frequency for Several Bias Potentials

Note the clear increase in the sheath resonance frequency as bias potential
increases. Also, while the local maximum of the plasma resonance isn’t par-
ticularly apparent in the magnitude plot, the zero crossing in the phase plot
associated with it is clearly visible, and remains at the same frequency as the
bias is varied. Both of these features are consistent with our theoretical expec-
tations. Using eq. (5), we obtain a value of 6.64.1x10% cm =3 for n.. , and
using eq. (15) the sheath thickness vs. voltage was calculated and plotted in
figure (7).

13
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Figure 7: Measured and Predicted Sheath Thickness

The measured sheath thickness is in reasonable agreement with the Debye
length at low voltages, as should be expected. It also appears to have a trend
similar to that predicted by the Blackwell[2] model of eq. (12) as the bias
potential is made more negative (note that the Blackwell model is not valid as
® approaches zero). While not in complete agreement with the predicted model,
the comparison provides evidence that our measurement techniques are sound
and that our results are reasonable.

5.2 Variation in Electron Density with Cathode Current

The second set of measurements were taken at a fixed xenon flow rate of 0.7
sccm, heater current at 3 amps, and floating probe potential. The cathode
current was then varied above and below its nominal value of .5 amps.

14
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Figure 8: Probe Impedance vs. Frequency for Several Cathode Currents

From the impedance plots, it is clear that the plasma frequency increases
with increased cathode current. Making use of eq. (5) again, we find that the
electron number density goes from 6.38x105cm ™3 at .45 A to 6.44x10%cm~3 at
5 A and 6.72x10%m™3 at .55 A. As might be expected, the electron density
increases with increased cathode current. This can be explained by the fact that
the xenon is not completely ionized when it passes through the cathode, with
a sizable portion of the gas leaving as neutral atoms. Increasing the cathode
current then increases the proportion of xenon that leaves the cathode ionized,
increasing both n, and n;.

6 Application to a Lorentz-Actuated Spacecraft

A Lorentz-actuated spacecraft uses the Lorentz force, F, = quxB, for propulsion|[14].
Assuming an Earth-orbiting spacecraft, let v be the spacecraft velocity vector, g
the net charge of the spacecraft, and B the magnetic field of the Earth. In order
to alter it’s trajectory, the spacecraft must have the ability to alter its charge,
which can be accomplished in a number of ways. One method is to apply a
potential across two conductors attached to the spacecraft. In the presence of
ionospheric plasma, the highly mobile electrons will effectively “ground” the pos-
itive conductor, while a sheath will form around the negative conductor. The
conductor will have some inherent self-capacitance, as well as some capacitance
due to the sheath, enabling it to store charge. The spacecraft as a whole will
develop a net negative charge. Two important things to note about this method
are that it is only effective for establishing a negative charge, and it requires a
power supply to maintain the charge in the presence of current flow from the

15



plasma. To create a practical propulsion system, one would want to maximize
stored charge while minimizing power usage.

6.1 Total Charge Storage

To address the first problem of maximizing stored charge, we will analyze two
different conductor configurations: a sphere and a long, thin wire. The sphere
has a self capacitance Cy given in eq. (14). In addition, the sheath formed by
the plasma effectively creates a larger concentric sphere with opposite charge,
enhancing the total capacitance of the system to that of eq. (19).

C.. — AmEoTsphere (aphere + 5) (19)

S

The same sheath phenomenon happens in the case of a wire, with the sheath
forming a coaxial conductor and adding to the total capacitance. In this case,
we will assume that the wire is sufficiently long that edge effects can be ignored,
so that the capacitance is approximately that given by eq. (20).

27’(’501

ln<1+T§ )

An ordinary capacitor is a linear device - it stores an amount of charge pro-
portional to the potential across it’s terminals, with it’s capacitance as the con-
stant of proportionality (C' = %) The concentric and coaxial sheath capacitors
described by egs. (19) and (20), however, are non-linear, as their capacitance
depends on s, which is itself a non-linear function of voltage. In this case, ca-
pacitance takes on the stricter definition of C' = % - the local slope of the
charge vs. potential curve. Because of this, to find the total charge stored on a
conductor in the plasma, we must numerically integrate the capacitance from 0
to the potential of interest. Figure (9) shows capacitance and total charge on a
sphere and a thin wire in a plasma. It demonstrates that the general charging
trends are the same for both the sphere and the wire. Also worth noting is that
a sphere with a radius of one centimeter has a charge holding ability equal to
that of about 15 cm of thin wire.

Chw = (20)
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Figure 9: Capacitance and Charge vs. Potential for a Sphere and a Thin Wire

At low potentials - when the sheath thickness is small - the capacitance is
indeed greatly enhanced by the sheath to a value an order of magnitude greater
than it would be in vacuum. Note, however, that the capacitance asymptotically
approaches it’s vacuum value as higher potentials are applied. Since total charge
is the integral of capacitance, the contribution of the sheath to the total charge
carrying ability of the conductor is actually not as large as one might expect -
a factor of about % increase at 100 volts, and a factor of about % at 200 volts.

Above a few tens of volts, the capacitance starts to level off. As a result, the
total charge can be approximated quite well above 50 V by an affine function. A
good rule of thumb for a sphere in a plasma with parameters similar to those of
the ionosphere is that the slope should be equal to about 1.5 times the vacuum
capacitance of the conductor, with the constant term approximately equal to
the total charge at 10 V.
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Figure 10: Charge vs. Potential Curves for a Sphere in Plasma and Vacuum

6.2 Power Requirements

Calculating power consumption requires knowledge of the current flow to the
conducting surfaces through the plasma. While there are several contributors to
the total current, the dominant one for a spacecraft in the ionosphere is thermal
current. For the purposes of a bounding estimate, we will ignore all others.

There are two general regimes for thermal current collection by a conductor
in a plasma depending on the conductor’s size in relation to its sheath. If the
conductor is much smaller than the sheath, it is said to be in the “orbital motion
limited” or OML regime, while if it is much larger than the sheath, it is said to
be in the “sheath limited” regime[15]. For bias voltages between 100 and 1000
volts in ionospheric plasma, the sheath size on the order of 5 cm. At that length
scale, the thin wire is squarely in the OML regime, while the sphere radius could
be on the same order as the sheath and is not clearly OML or sheath limited.
This is a problem, as there is no analytic theory of current collection in a plasma
for conductors between the two regimes[4], necessitating further experimental
work. For the purposes of this analysis, we will assume that the sphere is also
in the OML regime, as this produces higher currents and will give a bounding
worst-case.

The random thermal current density to a surface due to a Maxwellian plasma

18



is given by eq. (21)[4].

1 2KpT
Jin = = 21
= gna (2220 (1)
Assuming quasineutrality and thermal equilibrium, this can be written as eq.
(22).
1 2KgT,
Jin = ineQe < B > (22)
™m;

As the potential on the conductor increases, so too does the current. While the
I-V relationship is very complicated, for our parameters it can be reasonably
approximated by the following formula[4]

Ioyr = Adp (23)

where A is the surface area of the conductor and F is either

}n% + e (1 —erf (n%)> (24)

™

Fwi'r‘e ~

in the case of a long, thin wire or

Esphere =1 +1 (25)
in the case of a sphere, where
_ q®
1T KpT,

Combining the capacitance and charge models from section 7.1 with this cur-
rent model, we can study the power required to maintain a given charge for
the two different geometries. Since DC power is simply voltage times current,
substituting into eq. (23) we obtain the power as a function of potential for
both the wire and sphere.

sz're = QWTwirelwire(thhEuire (26)
Psphere - 47TT§phere(I)Jtthphere (27)

Looking at eqs. (26)-(27), it becomes clear that the sphere will have much
higher power requirements than the wire for the same amount of stored charge.
First, the sphere has many orders of magnitude greater area, and second, Fyppere
goes linearly with potential, while F,;.. goes approximately as the square root
of potential. While the OML current is conservatively high, the difference is
likely beyond any modeling uncertainty. Figure (11) shows power consumption
vs. stored charge curves for 5, 10, and 20 cm long 22 gauge wires. Note that
power consumption varies approximately quadratically with charge, and that
power consumption is substantially less with longer wires (or equivalently, a
greater number of shorter wires).
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Figure 11: Power Consumption vs. Stored Charge for Different Wire Lengths

7 Conclusion

The experiments performed thus far suggest that the impedance and Langmuir
probe techniques and accompanying analysis provide valid measurements of
the plasma parameters and sheath capacitance. The eventual goal of these
experiments is to be able to evaluate the capacitance and current flow associated
with arbitrary conductor geometries in the ionospheric plasma environment. To
reach that goal, several more steps must be taken.

First, the dependence of the plasma parameters on variations in the xenon
flow rate and cathode and heater currents must be determined. This will involve
taking temperature and density measurements while each of those parameters is
varied in turn with the other two fixed. This information will allow comparison
of the generated plasma to the ionosphere, and will either enable tuning the
parameters to more closely match the ionosphere, or provide the information
necessary to properly scale experiments.

Second, the portion of xenon that is actually being ionized by the cathode
should be determined. This is experimentally accessible through the collision
frequency, which appears in the resistance term of the probe impedance and
directly determines the width of the peaks in the magnitude plot. This infor-
mation is again important in determining the degree of fidelity to which the
ionosphere can be simulated, and is also important for determining the flow
behavior of the plasma as it exits the cathode in a conical jet.
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Third, the dependence of the sheath capacitance and probe current on the
non-zero flow velocity of the plasma should be determined. The analytic theory
of sheath formation assumes a stationary plasma, and exactly what happens in
the presence of a flowing plasma is only accessible via experiment, or numerical
methods (see Choiniere[6]). This is important for evaluating any enhancement
of the probe current due to the fluid motion of the plasma itself - known as ram
current, another effect that is present for a fast-moving body in the ionosphere.

Lastly, different conductor sizes must be tested. There is evidence that the
spherical probe does not fit into existing models for either sheath limited or
OML current collection. Testing a range of sizes will allow the development
of a new model valid for intermediate size scales, as well as verification and
refinement of existing models in the large and small extremes.

While this set of goals encompasses a large and ambitious range of experi-
mental work, the foundations have been successfully laid. Much of the remain-
ing work employs the measurement techniques that have already been developed
to test different permutations of plasma parameters and conductor geometries.
The knowledge gained will then aid the design of new satellite systems capable
of controlling their interactions with the plasma environment.
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A Impedance Probe Simulation Code

% Ezperimental Parameters
n_e = 5.0e6; %Number Density 1.07e7 (c¢cm~—3)
T e 1500; %Electron temperature 4840 (K)
rho = 1; %Probe radius 1.27(cm)

V = —1.0; %Probe bias (V)

X

Physical Constants
ep 0 = 8.854187817e—12; %Vacuum Permitivity (F/m)
e —1.602176487e—19; %FElectron charge (C)
m_e = 9.10938215e—31; %Electron mass (kg)
K b = 1.3806504e—23; %Boltzmann’s Constant (J/K)
K ev = 8.617343e—5; %Boltzmann’s Constant (eV/K)

U'lCD
\

% Plasma Quantities
%Debye length (cm)
lambda = sqrt(ep 0+K b/(e"2))xsqrt(T _e/(n_ex100°3))*100

%Plasma frequency (rad/sec)
omega pe — sqrt(e”2/(m_exep 0))*sqrt(n_ex100"3);

f pe = omega pe/(2xpi) %Plasma frequency (Hz)
N_d = n_exlambda~3; %Electrons in one Debye cube
nu_ei = 500000; %Collision frequency (Hz)

%Sheath thickness (Blackwell) (cm)
s = (2.5 — 1.87+exp(—0.39xrho/lambda) ) «(exV /(K b+T e))
~(2/5)*lambda

% Circuit Model

%Capacitance of metal sphere (Farads)
C_0 = 4xpixep_0x%(rho/100);

rsr2s = (rho+s) /(rho+2xs);
%Capacitance of sheath (Farads)
C sh = C 0x(rsr2s/(l—rsr2s));

%Bulk plasma inductance (Henries)
L p = 1/(C_Oxomega pe~2);

R_p = nu_eixL_p; %Bulk plasma resistance (ohms)
%Sheath resomance frequency (rad/sec)

omega sh = omega pexsqrt(C_0/(C_sh+C 0));

24



43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

f sh = omega_sh/(2+pi) %Sheath resonance frequency (Hz)
Z_sh = tf([1],[C_sh 0]); %Sheath impedance (ohms)
Z_c0 = tf([1],[C_0 0]); %Metal sphere impedance (ohms)

%Bulk plasma impedance (ohms)
Z_tank = tf ([L_p R_p|, [1]);

%Total impedance (ohms)
Z total = Z sh + 1/(1/Z_c0 + 1/Z_ tank);

%Reflection Coefficient
Gamma = (Z_total — 50)/(Z_total + 50);

figure (1)
%subplot (121);
bode(Z total);
%subplot (122);
bode (Gamma) ;
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B Capacitance and Total Charge Code

function Ctotal = Ctotal (V)

% Ezperimental Parameters

n_ e = 6.5885e+06; %ZNumber Density (ecm~—3)

T e = 1.3202e¢+03; %Electron temperature (K)

rho = 1.27; %Probe radius (cm)

1 = 5; %Wire length (cm)

r = .0332; %Wire radius (ecm) (this is 22 guage)
% Physical Constants

ep 0 = 8.854187817e—12; %Vacuum Permitivity (F/m)

e = —1.602176487¢—19; %Electron charge (C)

m e = 9.10938215e—31; %Electron mass (kg)

K b = 1.3806504e—23; %Boltzmann’s Constant (J/K)
% Capacitance Calculations

lambda = sqrt(ep 0xK b/(e~2))xsqrt(T_e/(n_ex100"3))*100;
%Debye length (cm)

% Sheath thickness (Blackwell)

s = (2.5 — 1.87+exp(—0.39xrho/lambda)) .x(e.xV./(K bxT e))
.~(2/5) .xlambda; % (cm)

if s < lambda
s = lambda;

end

Ctotal = 4xpixep 0x(rho/100).x((rho + s)./s); %Concentric
spheres

%Ctotal = (2xpixep_0x(1/100))./log((r+s)./7); %Coaxial
cylinders

end

function Qtotal = Qtotal (V)

%Integrate the Capacitance (C = dQ/dV) to find total Q
Qtotal = quad(@Ctotal, V, 0);

end
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