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Abstract Contact constraints arise naturally in many robot planning problems. In
recent years, a variety of contact-implicit trajectory optimization algorithms have
been developed that avoid the pitfalls of mode pre-specification by simultaneously
optimizing state, input, and contact force trajectories. However, their reliance on
first-order integrators leads to a linear tradeoff between optimization problem size
and plan accuracy. To address this limitation, we propose a new family of trajec-
tory optimization algorithms that leverage ideas from discrete variational mechan-
ics to derive higher-order generalizations of the classic time-stepping method of
Stewart and Trinkle. By using these dynamics formulations as constraints in direct
trajectory optimization algorithms, it is possible to perform contact-implicit trajec-
tory optimization with significantly higher accuracy. For concreteness, we derive
a second-order method and evaluate it using several simulated rigid body systems
including an underactuated biped and a quadruped.

1 Introduction

Trajectory optimization algorithms comprise a powerful collection of methods for
planning motions of nonlinear dynamical systems [3]. Generally speaking, these al-
gorithms aim to find an input trajectory that minimizes a cost function subject to
a set of constraints on the system’s states and inputs. Trajectory optimization has
a long history of successful application to systems with smooth dynamics. How-
ever, many robotic systems experience discontinuous frictional contact with the en-

Zachary Manchester
Harvard University, 60 Oxford St. Cambridge, MA 02138. e-mail: zacmanchester@
stanford.edu

Scott Kuindersma
Harvard University, 33 Oxford St. Cambridge, MA 02138. e-mail: scottk@seas.harvard.
edu

1

zacmanchester@stanford.edu
zacmanchester@stanford.edu
scottk@seas.harvard.edu
scottk@seas.harvard.edu


2 Zachary Manchester and Scott Kuindersma

vironment as an essential part of their routine operation. The non-smooth dynamics
encountered in these situations pose significant challenges.

A popular approach for handling contact events is to use a hybrid system model
that explicitly accounts for discontinuities [22]. However, contact mode sequences
must then be pre-specified by the user or generated by a higher-level heuristic plan-
ner. This approach can work quite well for systems with a small number of con-
tacts [6, 15, 24, 23, 28]. Unfortunately, for more complex systems, the number of
modes grows exponentially with the number of contact constraints, making mode
sequence pre-specification computationally impractical.

Recently, an alternative approach has emerged in which state, input, and con-
tact force trajectories are simultaneously optimized [21, 16, 26]. These so-called
contact-implicit trajectory optimization methods can synthesize motions without a
priori specification of the contact mode sequence. However, current state-of-the-art
algorithms rely on first-order discretizations of the dynamics constraints, severely
limiting accuracy and closed-loop trajectory tracking performance [28, 22].

To overcome the accuracy limitations of current algorithms, we propose a new
family of variational contact-implicit methods that combine ideas from discrete
mechanics with the complementarity formulation of rigid body contact to achieve
higher-order integration accuracy. For simplicity and concreteness, we provide an
explicit derivation of a second-order method. However, the mathematical tools used
are general, and can be applied to derive integrators of arbitrary order.

The remainder of the paper is organized as follows: Section 2 provides a sum-
mary of related work on trajectory optimization through contact. Section 3 then
gives a brief review of some important concepts from both classical variational me-
chanics and discrete mechanics. Section 4 derives the new variational rigid body
time-stepping scheme, and Section 5 introduces a direct trajectory optimization al-
gorithm built around these dynamics. Several examples that demonstrate the perfor-
mance of the new algorithm are then presented in Section 6. Finally, we summarize
our findings in Section 7.

2 Related Work

In spite of their limitations, hybrid trajectory optimization algorithms that rely on
a pre-specified contact mode sequence have had a number of notable successes.
For example, hybrid multiple-shooting algorithms have been used to find open-loop
stable walking trajectories for a two-dimensional model of a humanoid [15] and to
study the energetics of quadrupedal locomotion [23]. Hybrid collocation methods
with third-order integration accuracy have also been demonstrated on a full-body
model of a humanoid [22].

Much of the recent work on contact-implicit methods has focused on approx-
imation schemes to smooth discontinuities. Several authors have developed indi-
rect trajectory optimization algorithms based on differential dynamic programming
(DDP) [14] that apply a smoothing function to the contact constraints [26], model
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contact forces with nonlinear springs and dampers [10], or penalize constraint viola-
tions in the objective function [27, 11]. The penalty approach has also been applied
in direct trajectory optimization methods [16]. These algorithms have been used
to plan motions for quadrupeds [11, 10] and simplified humanoids [27, 26, 16] in
simulation.

The previous work most closely related to the present paper is that of Posa,
Cantu, and Tedrake [21]. Their algorithm attempts to accurately capture discontin-
uous rigid-body physics by relying on the “time-stepping” linear complementarity
formulation of Stewart and Trinkle [25, 2]. The essential idea behind time-stepping
methods is to apply a first-order semi-implicit Euler discretization to the dynamics,

M(qk)(vk+1− vk) = h
(
B(qk)uk +N(qk)

T
γk−C(qk,vk+1)

)
qk+1 = qk +hvk+1,

(1)

where k is a time index; q, v, u, and γ are configurations, velocities, control inputs,
and normal contact impulses acting over a timestep of length h, respectively; M
is the system’s mass matrix; B and NT are the Jacobians mapping control inputs
and normal contact forces into generalized coordinates; and C includes Coriolis and
potential terms. We have temporarily ignored the tangental (friction) component of
the contact force for clarity, but it is discussed extensively in Section 4.2. For the
normal component, we have the following constraints:

γk ≥ 0
φ(qk+1)≥ 0

γkφ(qk+1) = 0,
(2)

where φ(q) is a function that returns the signed distance between closest points on
bodies. In words, the conditions in equation (2) specify that normal forces can only
push bodies apart (not pull them together), that bodies cannot interpenetrate, and that
contact forces can only be non-zero when bodies are in contact. The combination
of (1) and (2) forms a linear complementarity problem (LCP) that can be solved
efficiently [2]. However, this formulation depends crucially on the particular choice
of first-order discretization used in (1).

While it may be possible to apply a higher-order discretization scheme in an
ad hoc way, it is not obvious how to do so while still satisfying the contact con-
straints. To overcome this, the next few sections introduce a set of mathematical
tools based on discrete mechanics [13] for systematically deriving time-stepping
methods with any desired order of integration accuracy. Previous authors have used
discrete mechanics, together with trajectory optimization, to plan motions for sys-
tems with smooth dynamics — an idea known as Discrete Mechanics and Opti-
mal Control (DMOC) [9]. Hybrid DMOC methods have also been used to optimize
bipedal walking gaits with pre-specified contact mode sequences [20].



4 Zachary Manchester and Scott Kuindersma

3 Preliminaries

This section reviews some classical results from variational mechanics, as well as
some more recent results from discrete mechanics.

3.1 Lagrange-D’Alembert Principle

Our starting point is the Lagrange-D’Alembert principle, which is the integral form
of D’Alembert’s principle of virtual work [12], and can also be thought of as a
modification of Hamilton’s principle of least action to accommodate external forces:

δ

∫ t f

t0
L (q, q̇)dt +

∫ t f

t0
F ·δqdt = 0. (3)

We use L to denote the system’s Lagrangian, F to denote a generalized force, and
δ to indicate a variation. Equation (3) describes a boundary-value problem in which
a trajectory q(t) is sought given fixed end points q(t0) and q(t f ).

We now review the steps used to derive the classical forced Euler-Lagrange equa-
tion from (3). Carrying out the variational derivative results in,∫ t f

t0
D1L (q, q̇) ·δq+D2L (q, q̇) ·δ q̇ dt +

∫ t f

t0
F ·δqdt = 0, (4)

where we have used the slot derivative Di to indicate partial differentiation with
respect to a function’s ith argument. The next step is to eliminate δ q̇ by performing
an integration by parts:

∫ t f

t0
D1L (q, q̇) ·δq− d

dt
D2L (q, q̇) ·δqdt +

∫ t f

t0
F ·δqdt

+D2L (q(t f ), q̇(t f )) ·δq(t f )−D2L (q(t0), q̇(t0)) ·δq(t0) = 0. (5)

The fact that the end points q(t0) and q(t f ) of the boundary value problem are fixed,
and thus δq(t0) = δq(t f ) = 0, can be used to eliminate the last two terms in (5):∫ t f

t0
D1L (q, q̇) ·δq− d

dt
D2L (q, q̇) ·δqdt +

∫ t f

t0
F ·δqdt = 0. (6)

Finally, recognizing that equation (6) must hold for all variations δq, we arrive at
the forced Euler-Lagrange equation:

d
dt

D2L (q, q̇)−D1L (q, q̇) = F. (7)
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3.2 Discrete Mechanics

Discrete mechanics encompasses a set of mathematical tools for deriving special-
ized numerical integrators for mechanical systems. These so-called variational in-
tegrators have many advantages over traditional Runge-Kutta schemes, including
realistic long-term energy and momentum behavior [13] (although this is not our
primary focus).

The general strategy behind discrete mechanics is to approximate the integrals
in (3) with a quadrature rule before taking variations. We begin by breaking those
integrals into N smaller pieces,

δ

N−1

∑
k=0

∫ tk+1

tk
L (q, q̇)dt +

N−1

∑
k=0

∫ tk+1

tk
F(q, q̇) ·δqdt = 0, (8)

where tk = t0 + kh and h is a small timestep. Each short integral in equation (8) is
then approximated. For simplicity and concreteness, we will use the midpoint rule:

δ

N−1

∑
k=0

hL

(
qk +qk+1

2
,

qk+1−qk

h

)
+

N−1

∑
k=0

h
2

F
(

qk +qk+1

2
,

qk+1−qk

h

)
· (δqk +δqk+1) = 0. (9)

Equation (9) can be written more compactly as,

δ

N−1

∑
k=0

Ld(qk,qk+1)+
N−1

∑
k=0

1
2

Fd(qk,qk+1) · (δqk +δqk+1) = 0, (10)

where Ld is the discrete Lagrangian,

Ld(qk,qk+1) = hL

(
qk +qk+1

2
,

qk+1−qk

h

)
, (11)

and Fd is the discrete generalized force,

Fd(qk,qk+1) = hF
(

qk +qk+1

2
,

qk+1−qk

h

)
. (12)

Note that the definitions of the discrete Lagrangian and discrete generalized force
depend on our choice of quadrature rule [13].

We now carry out the variational derivative in (10):
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N−1

∑
k=0

D1Ld(qk,qk+1) ·δqk +D2Ld(qk,qk+1) ·δqk+1

+
N−1

∑
k=0

1
2

Fd(qk,qk+1) · (δqk +δqk+1) = 0. (13)

Paralleling the derivation of the classical Euler-Lagrange equation in the previous
section, we perform a “discrete integration by parts” to line up the time indices of
the δq terms. This amounts to a simple index manipulation trick:

D1Ld(q0,q1)δq0 +
1
2

Fd(q0,q1) ·δq0

+
N−1

∑
k=1

(
D2Ld(qk−1,qk)+D1Ld(qk,qk+1)+

1
2

Fd(qk−1,qk)+
1
2

Fd(qk,qk+1)

)
·δqk

+D2Ld(qN−1,qN)δqN +
1
2

Fd(qN−1,qN) ·δqN = 0. (14)

As in the continuous case, the endpoints q0 and qN are fixed. As a result, δq0 =
δqN = 0, and the first and last terms in (14) can be eliminated:

N−1

∑
k=1

(
D2Ld(qk−1,qk)+D1Ld(qk,qk+1)

+
1
2

Fd(qk−1,qk)+
1
2

Fd(qk,qk+1)

)
·δqk = 0. (15)

Finally, using the fact that equation (15) must hold for all variations δqk, we arrive
at the following discrete-time version of the forced Euler-Lagrange equation:

D2Ld(qk−1,qk)+D1Ld(qk,qk+1)+
1
2

Fd(qk−1,qk)+
1
2

Fd(qk,qk+1) = 0. (16)

Equation (16) can be used to simulate the dynamics of a mechanical system by
inserting values for qk−1 and qk and solving for qk+1. In fact, it is equivalent to the
implicit midpoint method. In general, the order of accuracy of a variational inte-
grator is equal to the order of accuracy of the quadrature rule used in its construc-
tion [13]. Since the midpoint rule has a global error of O(h2), an integrator based on
(16) inherits this second-order accuracy. Variational integrators of any desired order
can be derived by simply choosing an appropriate quadrature rule [19].

4 Variational Time-Stepping Methods

Time-stepping methods for simulating rigid body dynamics with contact were first
proposed by Stewart and Trinkle [25]. The essential idea is to deal with the discon-
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tinuities that occur during rigid body impacts by formulating the dynamics at the
level of impulses and velocities, rather than forces and accelerations. The contact
impulse produced during a timestep is computed, together with the next state, by
solving a constrained optimization problem.

Since variational integrators like (16) are also formulated in terms of impulses
and avoid direct computation of forces and accelerations, they are a natural choice
for handling rigid body contact dynamics. In this section, we derive a time-stepping
method with second-order integration accuracy using ideas from discrete mechan-
ics. We treat only the case of perfectly inelastic collisions, however extension to
the elastic case is possible along the same lines used in existing time-stepping
schemes [2].

4.1 Interpenetration and Complementarity

Interpenetration must not occur between rigid bodies. Mathematically, this con-
straint can be expressed as an inequality,

φ(q)≥ 0, (17)

where φ(q) is a vector-valued function that evaluates the signed distance between
closest points on all pairs of bodies.

To build a variational integrator that respects the interpenetration constraint, we
add it to (10) with a corresponding Lagrange multiplier, γ [13]:

δ

N−1

∑
k=0

Ld(qk,qk+1)+ γ
T
k φ(qk+1)+

N−1

∑
k=0

1
2

Fd(qk,qk+1) · (δqk +δqk+1) = 0. (18)

Note the choice of time indices in the constraint term γT
k φ(qk+1) to indicate that a

contact impulse during timestep k must be generated such that the next state satisfies
the inequality φ(qk+1)≥ 0.

Following the same steps used to derive equation (16) in the previous section, we
find,

D2Ld(qk−1,qk)+D1Ld(qk,qk+1)

+
1
2

Fd(qk−1,qk)+
1
2

Fd(qk,qk+1)+N(qk+1)
T

γk = 0,
(19)

where N(q)T = (∂φ/∂q)T is the Jacobian mapping normal contact forces into gen-
eralized coordinates. In addition, solutions to (19) must satisfy the following condi-
tions:
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γk ≥ 0
φ(qk+1)≥ 0

γ
T
k φ(qk+1) = 0.

(20)

The combination of (19) and (20) form the first-order necessary conditions, known
as Karush-Kuhn-Tucker (KKT) conditions, for an inequality constrained optimiza-
tion problem [4].

Physically, the Lagrange multiplier γk takes on the magnitude of the contact im-
pulse in the normal direction. The three conditions in (20) are collectively known
as a complementarity constraint. In addition to preventing interpenetration, they en-
sure that contact forces can only push bodies apart (not pull them together), and
that contact forces can only act when bodies are in contact. Such constraints are
commonly denoted using the following shorthand notation:

0≤ γk ⊥ φ(qk+1)≥ 0. (21)

Intuitively, complementarity constraints express discontinuous “switching” be-
havior: only one variable or the other is allowed to be non-zero at a time. They are
an inherent feature in many models of contact physics.

4.2 Coulomb Friction

Coulomb friction exerts forces in the plane tangent to the contact surface between
two bodies. It can be described by the Maximum Dissipation Principle [17], which
states that friction forces instantaneously maximize the dissipation of kinetic energy.
Mathematically, this can be written as,

minimize
b

q̇T DT b

subject to ‖b‖ ≤ µγ,
(22)

where b is the friction force, µ is the friction coefficient, DT is the Jacobian map-
ping tangential contact forces into generalized forces, and the constraint ensures that
forces remain within the Coulomb friction cone.

For computational reasons, it is standard in time-stepping methods to form an
inner approximation to the friction cone using a polyhedron [25, 2]. For the special
case of a pyramidal approximation, this is accomplished by defining a new friction
vector β with twice as many elements as b, enforcing the constraint β ≥ 0, and
forming a new Jacobian matrix:

P =

[
D
−D

]
. (23)

With this approximation, the optimization problem (22) becomes,
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minimize
β

q̇T PT
β

subject to µγ− eT
β ≥ 0
β ≥ 0

(24)

where e is a vector of ones.
The set of first-order necessary conditions (KKT conditions) for an optimum of

(24) are,
Pq̇+ψe−η = 0

β ,ψ,η ≥ 0

µγ− eT
β ≥ 0

ψ
T (

µγ− eT
β
)
= 0

η
T

β = 0,

(25)

where ψ and η are Lagrange multipliers. In the more compact shorthand notation
introduced in the previous subsection, these conditions can be rewritten as:

Pq̇+ψe−η = 0

0≤ ψ ⊥
(
µγ− eT

β
)
≥ 0

0≤ η ⊥ β ≥ 0.

(26)

Physically, the Lagrange multiplier ψ approximates the projection of the sys-
tem’s velocity onto the plane tangent to the contact manifold. The conditions in (26)
ensure that the friction force will assume whatever value is necessary to prevent
sliding when ψ = 0, up to the boundary of the friction cone. In the sliding case,
when ψ 6= 0, the friction force will lie on the boundary of the friction cone.

4.3 A Second-Order Variational Time-Stepping Method

We now build a complete time-stepping method by combining the results of sec-
tions 4.1 and 4.2. We first define a vector λ that combines the normal and friction
components of the contact impulse,

λ =

[
γ

β

]
, (27)

and the corresponding Jacobian matrix to map λ into generalized coordinates:

J =

[
N
P

]
. (28)

The discrete Euler-Lagrange dynamics can then be written as follows:
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D2Ld(qk−1,qk)+D1Ld(qk,qk+1)

+
1
2

Fd(qk−1,qk)+
1
2

Fd(qk,qk+1)+ J(qk+1)
T

λk = 0. (29)

The set of complementarity conditions derived in the previous subsections are
used to determine λk in (29). Given qk−1 and qk, the following feasibility problem
can be solved to find λk and qk+1,

r(h,qk−1,qk,qk+1,λk) = 0

P(qk+1)

(
qk+1−qk

h

)
+ψke−ηk = 0

0≤ (µγk− eT
βk)⊥ ψk ≥ 0

0≤ φ(qk+1)⊥ γk ≥ 0
0≤ βk ⊥ ηk ≥ 0,

(30)

where r(h,qk−1,qk,qk+1,λk) = 0 refers to equation (29).

5 Direct Trajectory Optimization

We now propose a direct trajectory optimization algorithm that uses the variational
time-stepping scheme developed in the previous section as a set of dynamics con-
straints. Our strategy is to formulate the trajectory optimization problem as a nonlin-
ear program (NLP) and to solve it using standard constrained optimization software.

To ease the numerical difficulties associated with complementarity constraints,
we apply a smoothing scheme similar to that used in [7]. The key idea is to relax
the equality constraints in the three complementarity conditions in (30) by replacing
them with inequalities and introducing the slack variables sk:

r(h,qk−1,qk,qk+1,λk) = 0

P(qk+1)

(
qk+1−qk

h

)
+ψke−ηk = 0

λk,ψk,ηk,sk ≥ 0
φ(qk+1)≥ 0

(µγk− eT
βk)≥ 0

sk−η
T
k βk ≥ 0

sk− γ
T
k φ(qk+1)≥ 0

sk−ψ
T
k (µγk− eT

βk)≥ 0.

(31)
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Figure 1 illustrates the feasible regions for both the original “strict” complementar-
ity constraints and the new relaxed complementarity constraints in (31). If the slack
variables are reduced to zero, the two regions coincide.

Relaxed Feasible Region
Strict Feasible Region

Fig. 1 Illustration of feasible regions for relaxed and strict complementarity constraints.

Physically, the relaxed complementarity constraints allow contact forces to act at
a non-zero distance from the contact manifold. This aids convergence, but we would
ultimately like solutions that closely respect the true constraints. To encourage con-
vergence of solutions towards strict satisfaction of the complementarity constraints,
we augment the cost function with a term that penalizes sk. The trajectory optimiza-
tion algorithm can now be stated as the following NLP:

minimize
h,Q,U ,C

J(h,Q,U )+α

N−1

∑
k=1

sk

subject to f (h,qk−1,qk,qk+1,λk,ψk,ηk) = 0
g(qk+1,λk,ψk,ηk,sk)≥ 0

umin ≤ uk ≤ umax

hmin ≤ h≤ hmax,

(32)

where J is a cost function; α is a positive scalar weighting parameter; f and g are
the equality and inequality constraints in (31); Q is the set of all configuration knot
points, qk; U is the set of all control inputs, uk; and C is the set of all contact-related
variables, λk, ψk, ηk, and sk.

The penalty on the slack variables in the the cost function of (32) is a so-called
“exact penalty” that has theoretical convergence guarantees with finite values of
α [1]. In practice, we have observed good convergence behavior with modest values
of α . Problem (32) can be solved with standard nonlinear programming algorithms
like sequential quadratic programming (SQP) and interior-point methods [18]. It
is also straight-forward to include additional constraints on the system’s state and
inputs.
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6 Examples

To evaluate the proposed trajectory optimization algorithm, we demonstrate its abil-
ity to generate complex, multi-contact motions by optimizing walking trajectories
for two simulated legged robots: Spring Flamingo and LittleDog. We also com-
pare its accuracy to the first-order method used by Posa et al. [21] in both open-
and closed-loop simulations. In all cases, the optimizer was initialized with dynam-
ically infeasible trajectories consisting of linear interpolation between initial and
goal poses. No a priori information about contact forces or mode sequences was
used.

6.1 Spring Flamingo

Spring Flamingo is an 18-state planar bipedal robot with actuated hips and knees
and a passive spring ankle joint [8]. A trajectory optimization problem was defined
in which the robot was required to move from an initial standing pose to a final
standing pose translated to the left. The following cost function was minimized,

J =
N−1

∑
i=1

0.1(xi− xg)
T (xi− xg)+uT

i ui, (33)

where xg is the goal state. Figure 2 shows a sequence of frames taken from the
optimized walking gait. The algorithm discovered an energetically efficient heel-toe
gait that exploits the passive dynamics of the leg and ankle.

Fig. 2 Spring Flamingo optimized walking gait.
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6.2 LittleDog

LittleDog is a 36-state quadrupedal robot designed by Boston Dynamics to enable
research on legged locomotion [5]. A trajectory optimization problem was defined in
which the robot was required to climb up an 11 cm step. Once again, initial and final
state constraints were enforced and a simple quadratic cost function was minimized.
Figure 3 shows an example climbing strategy and Figure 4 shows the corresponding
sequence of modes (combinations of foot contacts) that were generated implicitly
by the solver.

Fig. 3 LittleDog climbing a step.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Back Left

Back Right

Front Left

Front Right

Time (s)

Fig. 4 Contact mode sequence for each foot from LittleDog step-climbing example.

6.3 Simulation Accuracy

We compare the first-order and variational time-stepping methods in open-loop
simulations of a tumbling brick hitting the ground and closed-loop simulations of
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the LittleDog robot tracking a walking trajectory with proportional-derivative (PD)
feedback control applied to its joints.

2 4 6 8 10 12 14 16
0

1

2

Knot Points

R
M

S
E

rr
or

First Order
Variational

Fig. 5 Falling brick simulation RMS error and standard deviation

Tumbling-brick simulations were initialized with twenty different randomly cho-
sen initial conditions while varying the number of knot points. A reference solution
was computed using the first-order method at a sample rate of 2 kHz. Figure 5 shows
the root mean square (RMS) error (compared to the reference solution) as a function
of the number of knot points. The variational method achieves better accuracy with
fewer knot points than the first-order time-stepping method.

To test closed-loop tracking performance, a set of walking trajectories was first
optimized using both first-order and variational time-stepping dynamics as con-
straints. The number of knot points used to parameterize the trajectories was var-
ied between 10 and 40. Simple PD control was applied to each joint of the robot,
and simulations were performed using the first-order method at a sample rate of 2
kHz. Figure 6 shows the RMS tracking error in the robot’s state. Once again, better
accuracy is achieved with fewer knot points using the variational method.

10 15 20 25 30 35 40
0.2

0.22

0.24

0.26

0.28

0.3

Knot Points

R
M

S
E

rr
or

First Order
Variational

Fig. 6 RMS tracking error for LittleDog walking with PD tracking controller.
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7 Conclusions

We have presented a new family of variational time-stepping algorithms that gen-
eralize previous methods to higher orders of integration accuracy. We derived a
second-order method and incorporated it into a direct trajectory optimization al-
gorithm that solves for contact forces along with state and input trajectories. Our
numerical tests suggest that the method offers improvements over existing first-
order contact-implicit trajectory optimization algorithms, allowing smaller NLPs
to be solved while maintaining reasonable accuracy. We also demonstrated the al-
gorithm’s ability to generate walking trajectories for simulated underactuated robots
with minimal problem-specification effort.

There are several directions for future work. First, a more extensive numerical
comparison including 3rd and 4th-order time-stepping methods would allow us
to better understand the trade-off between accuracy and computational cost. Sec-
ond, our current MATLAB implementation requires several minutes to compute the
SpringFlamingo and LittleDog plans described in the previous section. Significant
speed improvements could be made with a careful C++ implementation that exploits
sparsity structure of the problem. Finally, as other authors have observed [16], the
contact mode trajectory often changes over longer timescales than the state and
input trajectories. Explicitly encoding this into the NLP formulation could aid con-
vergence and avoid unnecessary contact transitions.
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