
Recursive Inertia Estimation with Semidefinite Programming

Zachary R. Manchester∗

Harvard University, Cambridge, Massachusetts, 02138

Mason A. Peck†

Cornell University, Ithaca, New York, 14850

A recursive algorithm suitable for on-orbit estimation of a spacecraft’s inertia tensor is presented.
The estimation problem is formulated as a semidefinite program with explicit enforcement of positive-
definiteness and other constraints on the elements of the inertia tensor, which enhances convergence
and guarantees that a physically valid result is returned. A discrete mechanics formulation of the
spacecraft dynamics allows data routinely generated by spacecraft attitude determination systems to
be directly used as input to the estimator. Numerical examples demonstrate the performance of the
algorithm on simulated telemetry data.

Nomenclature
F = symmetric positive-semidefinite matrix
F = quaternion generalized force
h = time step
I = identity matrix
J = inertia matrix in body-fixed axes
j = vector of inertia components in body-fixed axes
k = time index
L = Lagrangian
Nr = number of reaction wheels
q = unit quaternion
Q = orthogonal matrix
R = upper-triangular matrix
s = slack variable
S = skew-symmetric cross-product matrix
S = action
t = time
δ = variational derivative
φ = three-parameter incremental rotation
ε = small scalar
η = arbitrary perturbation
ρ = rotor angular momentum
τ = external torque
ω = angular velocity in body-fixed axes

I. Introduction
Knowledge of a spacecraft’s inertia tensor is vital to the performance of guidance, navigation, and control algorithms.
While estimates of the inertia can be calculated before launch by tabulating the masses and locations of spacecraft
components, the accuracy of such estimates is limited. Additionally, a spacecraft’s inertia may change in unpredictable
ways throughout a mission due to fuel use, deployment failures, damage, or a variety of other reasons. As a result, the
ability to estimate a spacecraft’s inertia on orbit can offer improved pointing performance and robustness to modeling
uncertainty and component failures.

Several algorithms for estimating a spacecraft’s inertia parameters from telemetry data have been proposed. Bergmann,
Walker, and Levy developed a filter for estimating inertia that ignores the nonlinear terms in the rigid body equations
∗Postdoctoral Fellow, School of Engineering and Applied Sciences, 60 Oxford Street, Member, zmanchester@seas.harvard.edu
†Associate Professor, Sibley School of Mechanical and Aerospace Engineering, 208 Upson Hall, Member, mp336@cornell.edu



of motion [1]. Ahmed, Coppola, and Bernstein proposed an adaptive attitude-tracking controller that recovers the ele-
ments of the inertia matrix under certain excitation conditions [2]. Psiaki presented a batch least-squares algorithm for
estimating inertia as well as actuator alignment and scaling parameters [3]. Tanygin and Williams developed a least-
squares estimator based on kinetic energy and integration of the work done by actuator inputs [4]. Norman, Peck,
and O’Shaughnessy proposed a recursive least-squares algorithm for estimating inertia and actuator alignment param-
eters based on angular momentum [5]. The algorithm developed here is most closely related to that of Keim, Behcet,
and Shields, who formulated batch least-squares inertia estimation as a semidefinite program to enforce positive-
definiteness and constrain the elements of inertia with upper and lower bounds [6].

All of the existing inertia estimation methods cited suffer from at least one of the following drawbacks: First, most
do not take into account the physical constraints on the components of the inertia tensor, in particular, positive defi-
niteness and the “triangle inequality” [7]. Without accounting for these constraints, estimation algorithms can return
unphysical results and perform poorly when data is sparse or very noisy. Second, many algorithms require derivatives
or integrals of measured spacecraft state variables as input, necessitating prefiltering that introduces additional com-
plexity and numerical error. This study seeks to address both of these issues with a recursive estimator suitable for
real-time implementation.

Two key ideas underlie the estimation algorithm developed in this paper. The first is semidefinite programming,
which is introduced in section II, along with a review of the properties of inertia tensors and a brief overview of
quaternion algebra primarily intended to introduce notation. The second is discrete mechanics, which is used in
section III to develop a discrete-time equation of motion for a gyrostat spacecraft. Section IV then formulates batch
inertia estimation as a semidefinite program. Section V uses the batch estimator as the basis for a recursive inertia
estimation algorithm. Finally, numerical simulations involving both spinning and three-axis stabilized spacecraft are
presented in section VI to demonstrate the performance of the recursive algorithm.

II. Background
This section first highlights some properties of inertia tensors that will be useful in subsequent sections. Brief
overviews of semidefinite programming and the algebra of quaternions are then presented. Thorough treatments of the
latter two topics are available in the books of Boyd and Vandenberghe [8], and Altmann [9].

A. Inertia Tensors

Inertia tensors have several distinguishing mathematical properties which can be revealed by analyzing the kinetic
energy of a rigid body. For simplicity and clarity, bodies composed of discrete particles are treated here. However, the
results also hold in the continuous case.

For a body composed of N particles, the kinetic energy is,

T =
1
2

N∑
i=1

mi (vi · vi) (1)

where mi and vi denote the mass and velocity, respectively, of particle i. If the motion of the body consists only of
rotation about its center of mass, then the velocity of particle i is given by,

vi = ω × ri (2)

whereω is the angular velocity of the body and ri is the position of particle i relative to the center of mass. Substituting
equation (2) into equation (1) results in

T =
1
2

N∑
i=1

mi (ω × ri) · (ω × ri) (3)

Making use of the skew-symmetric cross-product matrix,

S (x) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 (4)

equation (3) can be expressed in body-fixed coordinates as

T =
1
2

N∑
i=1

mi
(
S (ri)ω

)ᵀ(S (ri)ω
)

(5)
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Collecting terms in equation (5), the kinetic energy can be written in the standard way,

T =
1
2
ωᵀJω (6)

where J is the matrix of components of the inertia tensor expressed in body-fixed coordinates:

J =
N∑

i=1

miS (ri)ᵀS (ri) (7)

Taking a closer look at equations (6) and (7) reveals several properties of the matrix J. First, since the kinetic-
energy quadratic form in equation (6) must be positive for any non-zero value ofω, J must be positive definite, denoted
J > 0. Second, by expanding the matrix product in equation (7),

S (r)ᵀS (r) =

r
2
y + r2

z −rxry −rxrz

−rxry r2
x + r2

z −ryrz

−rxrz −ryrz r2
x + r2

y

 (8)

it becomes clear that J is symmetric and that its diagonal elements are constrained by the triangle inequality [7],

J11 + J22 ≥ J33

J11 + J33 ≥ J22 (9)
J22 + J33 ≥ J11

where equality can hold only in the degenerate case of a body which is infinitesimally thin about one of the coordinate
axes.

B. Semidefinite Programming

A semidefinite program (SDP) is an optimization problem of the form

minimize
x

cᵀx

subject to F(x) ≥ 0
(10)

where x and c are vectors in Rn and F(x) is an m × m symmetric matrix defined as follows,

F(x) = F0 +

n∑
i=1

xiFi (11)

where F0 and Fi are symmetric. The inequality constraint F(x) ≥ 0 means that F(x) must be positive semidefinite.
That is, zᵀF(x)z ≥ 0 for all vectors z in Rm. Constraints of this type are known as linear matrix inequalities (LMIs)
[10]. SDPs are convex optimization problems. As a result, fast numerical algorithms that are guaranteed to converge
(if a feasible solution exists) are available for solving them [8].

Many standard optimization problems, including linear and quadratic programs, can be put into SDP form [11]. In
particular, the linear least-squares problem,

minimize
x

‖Hx − y‖22 (12)

where x ∈ Rn, y ∈ Rm, and H ∈ Rm×n, can be recast into an equivalent SDP by introducing a scalar slack variable s
into the vector of optimization variables:

x′ =
[
x
s

]
(13)

Using the fact that the Schur complement of a positive semidefinite matrix must also be positive semidefinite, the
least-squares problem can be embedded into the following LMI,

FLS (x′) =
[

s (Hx − y)ᵀ

(Hx − y) I

]
≥ 0 (14)
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which is equivalent to the scalar inequality

s − (Hx − y)ᵀ(Hx − y) ≥ 0 (15)

FLS (x′) has the following expansion in the form of equation (11),

Fi =



 0 −yᵀ

−y I

 for i = 0 0 Hᵀ
i

Hi I

 for i = 1 . . . n − 11 0
0 0

 for i = n

(16)

where Hi is the ith column of H and the zeros in Fn should be interpreted as zero blocks of the appropriate sizes. The
least-squares problem can now be put into the standard SDP form of equation (10):

minimize
[
0 · · · 0 1

] [
x
s

]
subject to FLS (x′) ≥ 0

(17)

Once an optimization problem is posed as an SDP, it can be modified by imposing a variety of additional LMI con-
straints. Multiple constraints can be enforced by forming a block-diagonal concatenation of their LMI representations.
In this way, linear and quadratic problems subject to a large class of convex constraints can be solved efficiently.

C. Quaternion Algebra

Quaternions form an algebra with a non-commutative binary product operation. It is often convenient to think of them
as four-dimensional objects composed of a three-dimensional vector part v and a scalar part s.

q =
[
v
s

]
(18)

This representation allows the quaternion product to be written in terms of scalar and vector products [9]:

q1q2 =

[
v1 × v2 + s1v2 + s2v1

s1s2 − v1 · v2

]
(19)

Note that, in general, q1q2 6= q2q1. Throughout the paper, quaternion products are indicated by juxtaposition, while
scalar and vector products are indicated in the usual way, with the · and × symbols respectively.

Rotations can be conveniently represented by unit-length quaternions. If r is a unit vector in R3 representing the
axis of rotation and θ is the angle of rotation, then the quaternion representing the rotation is as follows:

q =
[
r sin(θ/2)
cos(θ/2)

]
(20)

Both q and −q correspond to the same rotation, making the unit quaternions a “double cover” of the group of rotations.
The conjugate of a quaternion is denoted with a superscript † and represents the rotation about the same axis r by

−θ.

q† =
[
−v
s

]
(21)

Two rotations can be composed by multiplying their quaternion representations. A quaternion q3 representing a rota-
tion q1 followed by a rotation q2 is simply q3 = q2q1. The rotation of a three-dimensional vector x by a unit quaternion
q is

x̂′ = qx̂q† (22)

where x̂ indicates the formation of a quaternion with zero scalar part from the vector x:

x̂ =
[
x
0

]
(23)
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Finally, the subsequent analysis requires some kinematic identities relating quaternion derivatives to vector quan-
tities more familiar in rigid body dynamics. First, the time derivative of a body’s attitude quaternion is related to its
angular velocity in the following way:

ω̂ = 2q†q̇ (24)

Second, the quaternion generalized force corresponding to a torque on the body is [12, 13]

F = 2qτ̂ (25)

Schaub and Junkins provide a thorough discussion of rigid body dynamics using quaternions [14].

III. Discrete Gyrostat Mechanics
A gyrostat is a system of coupled rigid bodies whose relative motions do not change the total inertia tensor of the sys-
tem. This abstraction serves as a practical mathematical model for a spacecraft with reaction wheels. The fundamental
differential equation governing the motion of a gyrostat is,

J · ω̇ + ω × (J · ω + ρ) + ρ̇ = τ (26)

where J is the inertia tensor of the gyrostat taken about its center of mass, ω is the body angular velocity, ρ is the total
angular momentum stored in the rotors, and τ is the external torque applied to the gyrostat [15].

In principle, the inertia can be estimated using equation (26) if time histories of the variables ω, ω̇, ρ, and ρ̇
are available. In practice, however, the angular acceleration ω̇ is not measured directly and must be obtained from
noisy measurements of ω. Many solutions to this problem have been proposed, including various finite difference and
filtering schemes [6, 16] and integrating both sides of equation (26) with respect to time [3–5], but all add additional
complexity and suffer to varying degrees from numerical error and noise amplification. Here, a new approach is taken
in which discrete variational mechanics is used to derive a discrete-time version of equation (26) that does not contain
ω̇.

Discrete mechanics is a mathematical framework for deriving discrete-time algebraic equations of motion for me-
chanical systems based on classical variational mechanics [17]. The essential idea is to approximate the derivatives
and integrals encountered in the standard formulation of Lagrangian mechanics with finite differences and quadrature
rules before deriving equations of motion, rather than after. Discretizations derived from variational principles offer
many advantages over more traditional schemes like Runge-Kutta methods, including momentum and energy conser-
vation [17]. The remainder of this section gives a brief derivation of the discrete-time gyrostat equation originally
presented by the authors in [18].

A. Torque-Free Motion

The Lagrangian for a gyrostat is,

L =
1
2
ωB · JB · ωB +

Nr∑
r=1

1
2

(ωB + ωr) · Jr · (ωB + ωr) (27)

where JB is the carrier body’s inertia tensor (including rotor masses) taken about the body’s center of mass, ωB is the
carrier body’s angular velocity, the Jr are the rotor inertia tensors taken about each rotor’s center of mass, the ωr are
the rotor angular velocities relative to the carrier body, and the xr are the rotor positions relative to the carrier body’s
center of mass. Using equation (27), Hamilton’s principle states that the equation of motion for the gyrostat, in the
absence of external torques, can be found by setting the variation of the action equal to zero [19]:

δS = δ

∫ t f

t0
L dt = 0 (28)

The transition to discrete mechanics begins by breaking the action integral into short segments of length h, with
tk = t0 + kh:

δS = δ

∫ t f

t0
L dt = δ

N−1∑
k=0

∫ tk+1

tk
L dt = 0 (29)

The integral over a single time step on the right hand side of equation (29) is then approximated using a quadrature
rule. First, the body’s angular velocity is approximated by a finite difference of quaternions,

ω̂k = 2 q†k q̇k ≈ 2 q†k

(qk+1 − qk

h

)
= 2

(
fk − 1

h

)
(30)
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where fk = q†kqk+1 is the rotation between adjacent time steps. The rectangle rule is then applied to arrive at the
following discrete Lagrangian [18],

Ld =
2
h

[
fk · ĴB · fk +

Nr∑
r=1

( fk +
h
2
ω̂r,k) · Ĵr · ( fk +

h
2
ω̂r,k)

]
(31)

where ĴB and Ĵr are augmented 4×4 equivalents of JB and Jr:

Ĵ =


J11 J12 J13 0
J21 J22 J23 0
J31 J32 J33 0
0 0 0 0

 (32)

Substituting equation (31) into equation (29) results in the following discrete action sum:

Sd =

N−1∑
k=0

2
h

[
fk · ĴB · fk +

Nr∑
r=1

( fk +
h
2
ω̂r,k) · Ĵr · ( fk +

h
2
ω̂r,k)

]
(33)

Hamilton’s principle can then be applied by setting the variational derivative of equation (33) equal to zero using a
constrained variation of fk which respects the quaternion unit-norm constraint [18],

ε fk = fk + ε( fkη̂k+1 − η̂k fk) (34)

resulting in
N−1∑
k=0

[
fk · ĴB · ( fkη̂k+1 − η̂k fk) +

Nr∑
r=1

( fk +
h
2
ω̂r,k) · Ĵr · ( fkη̂k+1 − η̂k fk)

]
= 0 (35)

To ensure that the variations η in equation (35) have the same time index, a “discrete integration by parts” is performed,
which amounts to some simple index manipulation:

N−1∑
k=1

[
fk−1 · ĴB · ( fk−1η̂k − η̂k fk) +

Nr∑
r=1

( fk−1 +
h
2
ω̂r,k−1) · Ĵr · ( fk−1η̂k − η̂k fk)

]
= 0 (36)

At this point equation (36), which implicitly includes unit-norm constraints on the quaternions, is converted to an
unconstrained vector equation by parameterizing fk in the following way:

fk =
[

φk√
1 − φk · φk

]
(37)

This parameterization is only valid for |φk | < 1. Therefore, h must be chosen small enough to ensure that the incremen-
tal rotations between adjacent time steps are less than 180°. A number of other 3-parameter attitude representations
could be used instead, however, equation (37) is a natural choice that leads to simple and elegant expressions.

After substituting equation (37) and recognizing that equation (36) must hold for all variations ηk, the discrete-time
gyrostat equation is obtained,

√
1 − φk+1 · φk+1 (J · φk+1 +

h
2
ρk+1) + φk+1 × (J · φk+1 +

h
2
ρk+1)

=
√

1 − φk · φk (J · φk +
h
2
ρk) − φk × (J · φk +

h
2
ρk) (38)

where ρ is the total momentum stored in the rotors and J is the gyrostat inertia:

J = JB +

Nr∑
r=1

Jr (39)
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B. External Torques

External torques can be added to equation (38) using the integral form of the Lagrange-D’Alembert principle [20],

δ

∫ t f

t0
L dt +

∫ t f

t0
F · δq dt = 0 (40)

where the second term is the integral of the virtual work done by a generalized force F . The discrete form of equation
(40) is

δ

N∑
k=0

Ld +

N∑
k=0

F −d · δqk + F
+

d · δqk+1 = 0 (41)

F −d and F +d , known as discrete generalized forces, are defined as follows [17]:

F −d =

∫ tk+1

tk

1
2
F (q, q̇) ·

∂q(t)
∂qk

dt (42)

F +d =

∫ tk+1

tk

1
2
F (q, q̇) ·

∂q(t)
∂qk+1

dt (43)

Inserting the expression for the quaternion generalized force given in equation (25) and applying the rectangle rule
results in the following discrete quaternion generalized forces:

F −d ≈ hqkτ̂k (44)

F +d ≈ hqk+1τ̂k+1 (45)

Substituting these terms into equation (41) and performing some additional algebra reveals the forced discrete gyrostat
equation:

√
1 − φk+1 · φk+1 (J · φk+1 +

h
2
ρk+1) + φk+1 × (J · φk+1 +

h
2
ρk+1) +

h2

2
τk+1

=
√

1 − φk · φk (J · φk +
h
2
ρk) − φk × (J · φk +

h
2
ρk) (46)

Most attitude determination filters used on board spacecraft, including the ubiquitous multiplicative extended
Kalman filter (MEKF) [21, 22], directly estimate φk or a closely related three-parameter relative rotation at each
time step. Therefore, equation (46) provides an ideal starting point for an inertia estimation scheme. Unlike equation
(26), data readily available from existing spacecraft attitude determination systems can be used directly as input with
little or no additional preprocessing.

IV. Batch Inertia Estimation
In this section, estimation of the components of the inertia tensor from a time history of attitude observations, rotor
momenta, and external torques is formulated as a constrained batch least-squares problem. The resulting problem is
then transformed into an SDP which can be efficiently solved.

While equation (46) is nonlinear in φ, it is linear in J. To make this explicit, the matrix G(φ) and the vector j are
defined as follows:

G(φ) =

φ1 0 0 φ2 φ3 0
0 φ2 0 φ1 0 φ3
0 0 φ3 0 φ1 φ2

 (47)

j =



J11
J22
J33
J12
J13
J23


(48)

In terms of G and j, the matrix vector product Jφ becomes G(φ) j, allowing equation (46) to be rewritten as,

N(φk+1)
(
G(φk+1) j +

h
2
ρk+1

)
+

h2

2
τk+1 = M(φk)

(
G(φk) j +

h
2
ρk

)
(49)
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where the matrices M(φ) and N(φ) are defined as follows:

M(φ) =
√

1 − φ · φ I − S (φ) (50)

N(φ) =
√

1 − φ · φ I + S (φ) (51)

After collecting terms, equation (49) can be written as

Hk j = yk (52)

where the 3 × 6 matrix Hk and the 3 × 1 vector yk are defined as follows:

Hk = N(φk+1)G(φk+1) − M(φk)G(φk) (53)

yk = M(φk)
h
2
ρk − N(φk+1)

h
2
ρk+1 −

h2

2
τk+1 (54)

Given a set of attitude measurements collected over time φ1 . . .φN , along with corresponding time histories of
reaction wheel momenta ρ1 . . .ρN and external torques τ1 . . .τN , the batch inertia estimation problem can be stated as,

minimize
j

‖H1:N j − y1:N‖
2
2

subject to


J > 0
J11 + J22 − J33 ≥ 0
J11 + J33 − J22 ≥ 0
J22 + J33 − J11 ≥ 0

(55)

where H1:N and y1:N are concatenations of the Hk and yk matrices corresponding to each measurement:

H1:N =


H1
...

HN

 y1:N =


y1
...

yN

 (56)

The constrained least-squares problem (55) can then be transformed into an SDP using the results presented in section
II:

minimize
[
0 · · · 0 1

] [
j
s

]

subject to



J − εI ≥ 0
J11 + J22 − J33 ≥ 0
J11 + J33 − J22 ≥ 0
J22 + J33 − J11 ≥ 0[

s (H1:N j − y1:N)ᵀ

(H1:N j − y1:N) I

]
≥ 0

(57)

While the five LMI constraints in (57) have been written separately due to space constraints, they are concatenated
to form a single block-diagonal LMI in practice. The εI term in the first constraint, where ε is a small positive
constant, ensures that J is strictly positive-definite rather than positive-semidefinite. This constant should be chosen
slightly larger than the error tolerance of the SDP solver being used.

In addition to enforcing positive-definiteness and the triangle inequality, a variety of other constraints can be
included in the SDP formulation. This is especially useful for incorporating a priori knowledge into the estimator.
For example, if bounds can be placed on the elements of J from modeling or ground-based testing, they can be easily
accounted for by adding additional diagonal elements to the LMI in (57).

For J to be uniquely determined, a few conditions on the observations must be met. First, φk must be changing
in time. Otherwise the corresponding Hk matrices will be zero. Physically, this means that the spacecraft cannot be
stationary or in a spin about a principle axis with no nutation. Second, some non-zero internal rotor momentum or
known external torque must be applied to the spacecraft. Otherwise, the vectors yk will be zero. In that case, the
least-squares problem reduces to finding a vector in the null space of H, which is only determined up to an arbitrary
scale factor.
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V. Recursive Inertia Estimation
The batch estimation scheme of section IV suffers from one critical problem: As measurements are added, the size
of the matrices in the LMI constraint in equation (57) grow. As a result, the computational cost of the algorithm can
become prohibitive with just a few hundred measurements. Additionally, the full SDP problem must be re-solved each
time a new measurement is added. This section develops a recursive version of (57) that enables efficient updating and
only requires the solution of a small SDP of fixed-size at each time step.

The key to the recursive algorithm is the QR decomposition. A given matrix A can always be factored into the
product of an orthogonal matrix Q and an upper-triangular matrix R [23, 24]. If A is rectangular with more rows m
than columns n, the lower m − n rows of R are entirely filled with zeros:

A =
[
Q1 Q2

] [R1
0

]
(58)

Only the first n columns of Q and first n rows of R, denoted Q1 and R1 above, are actually needed to reconstruct A.
Standard linear algebra routines are available for calculating Q1 and R1 given an input matrix A, known as a “thin” or
“economy” QR decomposition [23, 24]. In the rest of this section it is assumed that such a routine is available and the
“thin” m × n Q1 and n × n R1 matrices will simply be denoted Q and R.

By applying the QR decomposition to H1:N , the least-squares problem (55) can be rewritten as,

minimize
j

‖R1:N j − z1:N‖
2
2

subject to


J > 0
J11 + J22 − J33 ≥ 0
J11 + J33 − J22 ≥ 0
J22 + J33 − J11 ≥ 0

(59)

where z1:N = Qᵀ
1:N y1:N . If a new set of observations HN+1 and yN+1 becomes available, R and z can be easily updated:

[Q1:N+1, R1:N+1] = qr
([

R1:N
HN+1

])
(60)

z1:N+1 = Qᵀ
1:N+1

[
z1:N
yN+1

]
(61)

Once R1:N+1 and z1:N+1 have been calculated, the constrained minimization (59) can be re-solved using the SDP
formulation of section IV. Unlike (57), the sizes of all matrices in equations (59)–(61) remain fixed as measurements
are added. Algorithm 1 summarizes the implementation of the recursive estimator.

Algorithm 1 Recursive Inertia Estimator
1: H1 ← Calculate using equation (53)
2: y1 ← Calculate using equation (54)
3: [Q1,R1]← qr(H1)
4: z1 ← Qᵀ

1 y1
5: for k = 2 : N do
6: Hk ← Calculate using equation (53)
7: yk ← Calculate using equation (54)

8: [Q1:k, R1:k]← qr
([

R1:k−1
Hk

])
9: z1:k ← Qᵀ

1:k

[
z1:k−1

yk

]
10: Jk ← Solve constrained least-squares problem (59) using SDP
11: end for

VI. Numerical Examples
This section presents two test cases that demonstrate the performance of the recursive inertia estimation algorithm.
First, a three-axis stabilized spacecraft is simulated performing a series of short slew maneuvers. Second, a spin-
stabilized spacecraft is simulated spinning about its major axis of inertia with some nutation. The spinning case is used
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to illustrate the benefits of incorporating additional constraints into the estimator by bounding one of the moments of
inertia to within 10% of a predetermined value, as might be available from pre-flight testing. Comparisons are made
to two other inertia estimation algorithms: a naive SDP algorithm based on equation (26) that uses finite differences
to obtain the required ω̇ data, and the momentum-based recursive inertia estimation algorithm of Norman, Peck, and
O’Shaughnessy [5].

All simulations use MATLAB’s ODE45 solver to integrate equation (26) with white noise disturbance torques
applied to the spacecraft with a spectral density of 10−8 N·m/

√
Hz in each axis. Simulated gyro measurements are also

corrupted with white noise with a spectral density of 10−5 °/s/
√

Hz in each axis. The true inertia in all cases is

Jtrue =

 1.0035 0.0368 −0.0678
0.0368 2.0047 −0.0755
−0.0678 −0.0755 2.9918


The MATLAB-based SeDuMi SDP solver [25] is used in these examples. A wide variety of other SDP solvers, both
free and commercial, are available [26].

In the first test case, a series of short slew maneuvers which could be executed on a three-axis stabilized spacecraft
are simulated. No a priori information is used to initialize the estimation algorithms. Figure 1 shows the commanded
rotor momentum components in body-fixed axes while figure 2 shows the simulated body-fixed angular velocity com-
ponents for the slew maneuvers. Figure 3 shows the relative Frobenius norm error in the estimated inertia for all three
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Figure 1. Rotor momentum components during slew maneuvers

algorithms. Figures 4 and 5 show the normalized errors in the estimated moments and products of inertia, respectively,
over the course of the simulation.

Thanks to the additional constraints they take into account, the SDP-based algorithms have slightly better perfor-
mance than the momentum-based scheme early in the simulation when little data is available. Later, the variational
SDP algorithm and momentum-based algorithm have similar performance, while the SDP scheme based equation (26)
has poor performance due to the use of finite differences to calculate ω̇.

The second test case demonstrates the advantages of including additional constraints in the SDP-based estimator.
A spacecraft is simulated spinning about its major axis of inertia with some nutation. The only control input is a
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Figure 2. Body angular velocity components during slew maneuvers
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Figure 3. Normalized inertia error during slew maneuvers

short pulse applied to a single reaction wheel 30 seconds into the simulation. Figure 6 shows the simulated body-fixed
angular velocity components, while figure 7 shows the rotor momentum components.

In the SDP-based estimators, the J33 component of the inertia matrix is constrained to be within 10% of a nominal
value of 3 kg·m2. Such an assumption is reasonable if, for example, a CAD model or ground-based experiment is
used to calculate inertia components before launch. Figure 8 shows the relative Frobenius norm error in the estimated
inertia for all three estimators. Normalized errors in the estimated moments of inertia are plotted in figure 9, while the
normalized errors in the products of inertia are plotted in figure 10.

Here again, the SDP-based estimators achieve lower errors early in the simulation. Thanks to the inclusion of the
10% bound on J33, they are able to estimate all of the other inertia components to within 10% as well. The momentum-
based scheme, on the other hand, cannot provide any useful information until a control torque is applied. After the
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Figure 4. Normalized moment of inertia errors during slew maneuvers

torque is applied, both the variational SDP scheme and momentum-based scheme achieve similar performance.

VII. Conclusions
This study presents a recursive algorithm for spacecraft inertia estimation using semidefinite programming. A discrete
mechanics formulation of the spacecraft dynamics allows data generated by standard attitude determination algorithms
to be directly used as input to the estimator. By formulating the estimation problem as an SDP, the positive-definiteness
and triangle-inequality constraints on the elements of the inertia tensor can be enforced, ensuring physically valid
results. A priori information can also be incorporated into the estimator in the form of additional LMI constraints,
enhancing convergence and leading to more accurate estimates when limited data is available. The availability of fast
numerical solvers for SDPs makes the algorithm suited for both off-line analysis and real-time implementation.
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Figure 7. Rotor momentum components for spinning case
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Figure 9. Normalized moment of inertia errors for spinning case
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Figure 10. Normalized product of inertia errors for spinning case
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