KickSat: Bringing Space to the Masses

Zac Manchester, KD2BHC

Who hasn’t dreamed of launching their own satellite? The opportunities afforded to
scientists, hobbyists, and students by cheap and regular access to space could open
up new areas of scientific research and enhance participation in science, technology,
engineering, and math (STEM) education. The KickSat project, begun at Cornell in
2011, is trying to put space within reach of everyone by dramatically lowering the
cost and technical expertise required to build and fly a satellite. This article will
provide an overview of KickSat and its communication system, including
information for setting up an amateur ground station.

The Sprite Spacecraft:

CubeSats have received a lot of well-deserved attention in the last few years.
They’'ve helped greatly expand the opportunities for students and HAMs to
participate in space. Unfortunately, however, the barriers to entry remain high. The
cost of building and launching a CubeSat is typically measured in hundreds of
thousands of dollars and its development, integration, and testing usually requires a
team with broad engineering expertise.

Thanks to rapid advances made in the semiconductor industry, it is now possible to
integrate most of the features of a traditional spacecraft into a chip-scale device. At
Cornell, we've leveraged the sort of tiny, low-cost, low-power integrated circuits
used in modern consumer electronics to build the Sprite, an example of a new
category of spacecraft known as a “ChipSat” or “femtosatellite.” The Sprite includes
solar cells, a Texas Instruments MSP430 microcontroller, a 70-centimeter band
transceiver, and several sensors on a printed circuit board measuring 3.5 by 3.5
centimeters and is, to the author’s best knowledge, the world’s smallest purpose-
built spacecraft.

Solar Cells

Gyroscope
Microcontroller

Magnetometer

<—— Antenna

Figure 1. Sprite ChipSat

The Sprite is intended as a general-purpose platform for small experiments, serving
as host to any of the numerous chip-scale sensors now commercially available. In
the near future, it will be possible for a student or hobbyist with basic electronics
skills to choose a sensor or two, write some microcontroller code, and put together a
working satellite with a few hours’ work. By shrinking the spacecraft and launching
many together, we can realistically achieve per-Sprite launch costs of $1,000 or less
at current prices.

KickSat:

The KickSat mission is a complete end-to-end demonstration of the Sprite, from
launch and deployment to communication with ground stations and tracking. It has
been made possible through the generous support of over 300 individual backers on
the crowd-funding website Kickstarter. Over $74,000 was contributed in exchange
for rewards such as having a name printed on a solar panel, receiving a souvenir
Sprite, or getting to program the flight code on a Sprite.

800 B3 Kicksat -~ Your personal <

&~ C & © www.kickstarter.com/projects/251588730/kicksat-your-personal-spacecraft-in-space w m Q
s — e Discover Start -
KICKSTARTER OO Al e
@ Dashboard = Backer report M Post update

KickSat -- Your personal spacecraft in space!

An Open Hardware project in Ithaca, NY by Zachary Manchester

315

BACKERS

$74,586

PLEDGED OF $30,000 GOAL

0

SECONDS TO GO

FUNDING SUCCESSFUL

This project successfully raised its funding
goal on December 3, 2011,

PLEDGE $25 OR MORE

| 67 BACKERS

Your name on one of KickSat's panels that

Figure 2: KickSat on Kickstarter

Kicksat's launch has been awarded through NASA’s Educational Launch of
Nanosatellites (ELaNa) program, which places university-built CubeSats as

secondary payloads on NASA missions. KickSat is currently manifested on CRS-3, a
Space-X Falcon 9 set to launch in late 2013. CRS-3’s primary mission is to bring
supplies to the International Space Station, so KickSat will be placed in roughly the
same orbit as the ISS - a 325 km altitude circular orbit with an inclination of 51.5°.

KickSat itself is a 3U CubeSat consisting of a 1U bus and 2U Sprite deployer. The bus
is being built using a combination of commercial-off-the-shelf (COTS) CubeSat
hardware and Cornell-built hardware to provide standard power, communication,
and command and data handling functions. The deployer will house approximately
150 Sprites inside a spring-loaded mechanism actuated by a nichrome burn wire. A
command from Cornell’s ground station will trigger the burn wire, releasing the
Sprites as free-flying spacecraft.

Figure 3: KickSat 3U CubeSat

After deployment, the Sprites will remain in orbit for a few weeks before reentering
and burning up in the Earth’s atmosphere. During that time, they will collect sensor
measurements, perform calculations and, most importantly, communicate with
amateur ground stations worldwide. The following sections will provide some
technical background on the Sprite’s communication system and the hardware and
software required to set up a receiver. More information on Kicksat and updates on
the project’s status are available online at kicksat.net.

Sprite Communication Background:

One of the most difficult engineering challenges associated with the KickSat project
is closing the communication link from orbiting Sprites to Earth stations. The
Sprite’s transmitter is limited to about 10 milliwatts of power. Additionally, a lack of
attitude control (the ability to point or reorient the spacecraft) means a low-gain
antenna with an omnidirectional gain pattern is required. Lastly, we need an
efficient way for all of the Sprites on a given mission to share limited bandwidth.
Closing link over several hundred kilometers with all of these constraints may, at
first glance, seem impossible, but with some signal processing, it turns out to be

quite doable with relatively cheap hardware. This section will provide a conceptual
overview of the techniques used in the Sprite receiver for the non-expert.

Let’s start with some basic link budget calculations. We'll follow the link from end to
end, working in decibels, to estimate the signal to noise ratio (SNR) at the receiver. A
Sprite transmits with a power of 10 mW or 10 dBm. The Sprite’s V-dipole antenna is
approximately isotropic with a gain of about 0 dB. To account for downrange
distance and allow for some margin on top of the Sprite’s 325 km orbital altitude,
we’ll baseline a distance of 500 kilometers. The Friis equation gives us a free space

path loss of2010g() = 2010g(7)z —139 dB. We'll assume our receiver

yl
anr 47m-5-105
antenna has about 7 dB of gain, consistent with a small handheld Yagi. Adding these
values up, we find that our received power should be in the neighborhood of
—122 dBm.

The next thing we need to calculate is the noise power in the receiver. There are two
main components to worry about - naturally present thermal noise and the noise
introduced by the receiver components themselves. Thermal noise is given by
10log(KzTB), where Kz is Boltzmann’s constant, T is temperature in Kelvin
(assumed to be about 150 K for space-viewing applications), and B is bandwidth in
Hertz. Plugging in the values for our particular case, we get—177 + 101log(64 -
103) =~ —129 dBm. The receiver’s self-induced noise, expressed in dB as noise
figure, has to be measured. For our purposes, we’ll assume a noise figure of 9 dB,
which is representative of what can be achieved with low-cost hardware. Adding
these together, we get a noise power of about —120 dBm.

If we subtract the results of our two previous calculations, we find that our SNR is
around —2 dB, the negative sign indicating that we have more noise than signal in
the receiver. While this situation might more typically be resolved by increasing
transmitter power or using higher-gain antennas, neither of those are viable options
in our case. Instead, we’ll make use of a trick used for decades by radar systems and
the Global Positioning System (GPS) known as matched filtering.

For those who haven’t studied signal processing, the basic idea behind matched
filtering is to substitute each data bit with a long, specially chosen string of bits
known as a pseudo-random number (PRN) code that is agreed upon by the
transmitter and receiver beforehand. Rather than trying to lock onto the carrier or
look for individual bits, the receiver looks for the PRN code by calculating a
statistical correlation against the incoming signal. If the code is present, the
correlation will be high, even in the presence of substantial noise, while if no code is
present, the correlation will be low. The technique essentially allows the energy in
the entire PRN code to be integrated up and treated as a single bit, providing a gain
equal to the PRN length.

For the KickSat mission, we're using PRN codes that are 640 bits long, providing a
“code gain” of about 28 dB. Adding this to our SNR puts us at a very respectable +26

dB. Keep in mind, however, that our data rate is now also lower by a factor of 640,
so there’s no free lunch. We’ve simply managed to trade data rate for gain.

Matched filtering helps us close our link, but it also helps us in another way. By
assigning different PRN codes to each Sprite, we can implement code-division
multiple access (CDMA), which you may be familiar with from the cellular telephone
standard. Rather than assigning each Sprite its own frequency, they can all share
one frequency and the receiver can “tune” to a particular Sprite by looking for its
unique PRN code. This has several advantages, including reduced use of spectrum,
simplified licensing, and the ability to record the signals from all the Sprites in a
pass with one receiver.

The last piece of theoretical background we need is forward error correction (FEC).
FEC is widely used in modern digital communication because it allows a receiver to
correct noise-induced errors in a message without having to ask for a re-
transmission. The idea is to pad the message with extra bits, known as parity check
bits, based on some mathematical rule. In our case, a linear block code is used where
a block of data is treated as a binary vector and encoded by simple matrix
multiplication.

To encode a byte, the Sprite multiplies the corresponding 8-bit vector by an 8-by-
16-bit matrix, known as the generator matrix of our code, to produce a 16-bit code
word. The receiver can take advantage of the redundant bits in the code word and
their mathematical relationship to the message bits to reproduce the original
message byte, even if errors have been introduced in transmission. For those
familiar with coding theory, our code is a (16,8,5) block code, and therefore can
detect and correct up to 2 bit flips or 5 bit erasures.

Sprite Receiver:

With the goal of allowing as many people as possible to participate in the KickSat
project, we've assembled and tested a reference design for a low-cost and portable
KickSat receiving station. The hardware consists of a hand-held yagi antenna, an
LNA, a DVB-T USB dongle, and a PC running the GNURadio software. The total
hardware cost, not including the PC, is around $200. Full instructions for assembling
a ground station will be available on the KickSat project wiki, accessible at
www.kicksat.net.

Figure 4: Ground Station Hardware

Because of the signal processing requirements inherent in our receiver design, a
software defined radio (SDR) receiver is being used. The DVB-T dongle functions as
a low-cost front end and analog to digital converter, bringing the raw baseband
signal into the PC. From there, our receiver is written in C++ as a set of blocks for the
GNURadio software framework. The block diagram in figure 5 shows the signal flow

in the receiver.
Sprite Correlator —
PRNID: 3 |
Sprite Correlator |-
PRN ID: 2 -

RTLSDR Source
e s Rational Resampler
ChO: Frequency (Hz): 437.24M
ChO: Freq. Corr. (ppm): 0 Decimation: 15
Cho: 1Q Balance Mode: Off (G- i .":':’?htbm 1
ChO: Gain Mode: Manual =
ChO: RF Gain (dB): 26 Fractional BW: 0
ChO: IF Gain (dB): 10

b-li Soft Decoder

Figure 5: Receiver Block Diagram

Starting from the DVB-T dongle input on the left, the signal is decimated (low-pass
filtered and down-sampled) to one sample per PRN chip, which is 64 kHz in our
current implementation. From there, it passes through two PRN correlators, each of
which performs matched filtering against a different PRN code. Figure 6 shows the

output of a correlator in which the spike corresponding to a PRN code is clearly
visible.

Correlator Output Bl &g [Persistence

80

60 !} Axes Options
1 Secs/Div: +| -

40 Counts/Div: +| -

Y Offset: +| -
20

|_\ T Offset: o=
. /
4 \.u PR T T A A o f T e T e A

Counts
o

| Autorange
Channel Options

2 ch1 | Trig

40 Mode: Normal
Slope: Pos +
-60

arflar|lar

Channel: | ch1
Level: 50% ||+ -

-80
3.6 SH/ 38 39 4 4.1 42 43 44

Time (ms) Run

Figure 6: Correlator Output

Each Sprite is assigned two PRNs - one corresponding to a zero bit and one
corresponding to a one bit. The correlator outputs are subtracted, giving a zero-
mean signal where a one corresponds to a positive spike and a zero corresponds to
a negative spike. The signal is then down-sampled again, this time to 200 Hz, by the
Soft Bit Decimator block, before passing into the decoder.

The Sprite decoder is a maximume-likelihood soft decoder. It takes a group of spikes
from the correlators and determines the byte that they most likely correspond to,
taking into account the parity bits. The best match is then printed to the console.
Figure 7 shows a screenshot of a running receiver with decoder output at the
bottom of the window.

SpriteReceiver.grc - /home/zacman/GitHub/kicksat/GroundStation/GNURadio - GNU Radio Companion

& X = &« (%]

Blocks
RTLSDR Source Sprite Correlator FT N
it (T OO Rational Resampler PRN1D:3 [SOUF(ES]
ChO: Frequency (Hz): 437.24M ————— P 0 > [Sinks]
ChO: Freq. Corr. (ppm): 0 e Subtract (B y [Operators]

ChO: 1Q Balance Mode: Off
ChO: Gain Mode: Manual
ChO: RF Gain (dB): 26
ChO: IF Gain (dB): 10

Taps: inl

> .
Fractional BW: 0 [Type Conversions]

[Stream Conversion
Misc Conversions]
Synchronizers]
Level Controls]
Filters]
Modulators]
Error Correction]

[
[
[
[
[
[
[Line Coding]
[
[
[
[
[

Sprite Correlator
PRNID: 2

>
»
»
>
>
>
o o :
>
>
>
>
>
>
>

Probes]
i oprice ;
Hello Earthlings Variables]
I'm a Sprite Misc]
Hello Earthlings Digital]
I'm a Sprite
Hello Eparthlings Digital Modulators
I'm a Sprite [oFDM]
Hello Earthlings N

FFT
I'm a Sprite [1
Hello Earthlings » [UHD]
I'm a Sprite » [Vocoders]
Hello Earthlings \)
I'm a Sprite
Hello

Figure 7: Receiver Output

The Sprite software receiver can run in real time on relatively recent PC hardware.
It can also be used in a batch mode where data is recorded during a pass and fed
through the receiver later. Both scenarios have been tested outdoors with Sprites
and receiver separated by 25 miles and an additional 23 dB of attenuation inserted
after the receiver antenna, roughly corresponding to the link conditions between
LEO and Earth stations anticipated for the KickSat mission.

Conclusion:

KickSat represents a new way for people across the world to participate directly in
spaceflight. With very modest hardware, amateurs can receive signals from Sprites
in LEO during the KickSat mission. All of the design files and code for the Sprite and
its software receiver are open source and available online for anyone to build their
own or use as a starting point for new designs.

Acknowledgements:
The author would like to thank the many people who have supported KickSat

financially through Kickstarter, as well as Andy Filo for many technical
contributions.

